Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Difference between resultant and equilibrant

23/11/2021 Client: muhammad11 Deadline: 2 Day

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Writer Writer Name Offer Chat

Writers are writing their proposals. Just wait here to get the offers for your project...

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Data flow diagram for hostel management system - Amp flexible super abn - How to write a history essay - 500 word essay - Centerline symbol bluebeam - Surreal sicko 2012 watch online free - I need 1500 words on Research competitive company websites and social media to see what type of postings are done - Advantages and disadvantages of research methods in psychology - How much did microsoft pay for nokia - Word of the week 2 - Answer question: part b - Product strategies in international marketing - Tls ciphertext length must not exceed 2 14 wireshark - Image Evaluation and Pathology Research Paper Guidelines - Isaiah 60 1 6 - Statistics 4 - How do i create a crn - Dunkin donuts crm strategy - Artifact of human creative expression examples - Why do tides vary from place to place - 130 short answer - How many credit points in a unit - Sam capstone project 1a - Essay - Richard rodriguez the lonely good company of books - Which of the following function prototypes is valid - Types of scientific enquiry - Draft exam timetable mq - A theoretical orientation is best described as - The declining balance method of depreciation produces - Swivel packing top drive - 26 derribong close karana downs qld 4306 - The kite runner chapter 8 9 summary - The side splitter theorem - Series circuit sample problems - Public finance final exam questions and answers - Proving trigonometric identities problem type 1 - A vending machine distributes soft drinks through an - Which end of a diode is positive - Adelaide school of languages japanese - Which of the following statements typifies defined contribution plans? - Select the correct statement regarding fixed costs - Yao x 2000 an introduction to confucianism cambridge university press - Interview with an Entrepreneur Essay - Birds eye view lesson plan - 3.2 3 practice the unia and the naacp answers - Section 15aa acts interpretation act - Rotated component matrix spss - Data analysis plus excel 2016 download - Research paper 3000 words - Sudwala lodge holiday club - Danfoss oil nozzle box - Managers and leaders are they different zaleznik - Shoaib akhtar car collection - Bachelor of applied social science community services torrens university - Nursing leadership chapter 9 - Abel donald fifty readings plus second edition - Single double triple tetra penta hexa - Risk Assessment Matrix and Continuity Plan - Coca cola company marketing plan - Song of myself questions and answers - Computing - John welbourn crossfit football - Cybertext accounting solutions - Operational definition of attitude - Seismic sea wave crossword - How to make an array in mips - Discussion(NCM) - A character variable can never store more than - Project management conveyor belt project - Allusions in shrek 1 - Pedagogy of the oppressed chapter 1 discussion questions - Tafe teacher classification levels - Big skinny case study - Catch up week Kanopy Document - Calculate patient acuity - High dependency unit edinburgh royal infirmary - Https www mindtools com pages article leadership style quiz htm - Marketing Research task - Attendance monitoring and payroll system thesis - How much do patagonia employees make - Infotech in global economy - Identify resources that allow you to research your health condition. Analyze the resources to ensure that they are appropriateβ€”in other words, reliable and academically sound. Review the websites from Walden Library located in the Resources for guidance. - Chroma melody light bulb troubleshooting - Legal A.1 - Old testament character sketch bibl - Michael moss the extraordinary - Lorenzo michael murphy odone - _____ is the questionnaire used in fiedler's model to determine leadership orientation. - Hooke's law experiment graph - A rechargeable flashlight battery is capable of delivering - Shillingburg fundamentals of fixed prosthodontics 5th edition - Cyber assignment - Montefiore Medical Center Case Study: recommendation - How to determine the purity of benzoic acid - Acs code of professional conduct - "Salvage The Bones" Analysis Essay - Potentiometer in physics lab - Indian and international number system - Describe an advertisement you dislike the most cue card