Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Forces and vectors lab report

14/10/2021 Client: muhammad11 Deadline: 2 Day

Physics Lab ( Vector Addition Of Forces)

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Finance Homework Help
Quick N Quality
George M.
Essay & Assignment Help
Solution Provider
Smart Tutor
Writer Writer Name Offer Chat
Finance Homework Help

ONLINE

Finance Homework Help

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$18 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$26 Chat With Writer
George M.

ONLINE

George M.

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$36 Chat With Writer
Essay & Assignment Help

ONLINE

Essay & Assignment Help

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$42 Chat With Writer
Solution Provider

ONLINE

Solution Provider

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$22 Chat With Writer
Smart Tutor

ONLINE

Smart Tutor

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$48 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Reading off a log graph - Junos end of support - Cell cycle lab report - State theatre melbourne seats - Week3 ORG400 - Network technology substrates - Wileyplus assignment week 1 assignment - Week 9 Discussion Response to Classmates - Salem telephone company case study chegg - Sarbance - Peter johnson police scanner listen live tasmania 2021 - Human behavior negative and positive effects on the environment - Project management lesson plan - Jake and amir interrogator outtakes - Photosynthesis and cellular respiration in elodea lab answers - Mbs direct online bookstore snhu - Calculate floor load width - 6 4 historical analysis essay progress check 2 - Round robin 5 players - Definition of duty of care - Www usana com autoship - Please Respond if you can answer in 6-7 hours - Mount alexander animal shelter - How to write an exegesis conclusion - Distributor type fuel pump - Cycladic minoan and mycenaean cultures - Archetypes in wuthering heights - The progressive movement drew its strength from - Australian air express v langford - Db2 - Far and away movie trailer - Essay Box Office Flop - NET PRESENT VALUE, CAPITAL BUDGETING - Musee de l homme sarah baartman - Inventory management system report - Solve the following sets of simultaneous equations - Prepare chiara company's balance sheet as of december 31 - Susan michie behaviour change wheel - Value proposition adidas - Purchasing state lottery tickets is reinforced - Discussion about A digital forensics professional - Co op funeral flowers - Https www youtube com watch v gf81d0ys58e - Week-10 - Christology from above - Bc building code accessibility - Boise state financial aid office - Chinese dragon pearl story - According to the corruption perceptions index scores in table 9.1 - Stop the insanity susan powers - Annex 1 section a7 of mifid - MartΓ­n y rodolfo nadan en la piscina. van a nadar en la piscina maΓ±ana tambiΓ©n. - 12 oranges cost - The raw materials inventory account is a subsidiary account - The ntl handbook of organizational development and change pdf - Southern new hampshire university public safety - Mlc masterkey business super abn - Guinea pig heat stroke - Johnson and johnson case study - Youtube fawlty towers communication problems full episode - Activities of management information system - Physiotherapy frimley park hospital - Asc 605 bill and hold - Macbeth why should i play the roman fool - Bluebeam measuring in inches not feet - Measure ee lausd pros and cons - HR 6 Research based - Culture and Health Care System - Trend adjusted exponential smoothing formula - Peanut company acquired percent of snoopy - A4: Unit 7 and 8(Global Affairs and elections, parites, etc.) - Strategic management of coca cola - Http earthquake usgs gov learn kids eqscience php - How to write a physics report - Case study - 177 r3a k1 f - A-plus students - ENG102: Critical Writing - Burpengary western performance club - Bmw s1000rr tyre pressure - The blind side analysis - How to build bridges with friends - Australian top 100 music charts - Toyota prius target market segment - Mirror ray diagram worksheet answers - A manufacturing company that produces a single product - Mw petroleum corporation case solution - Rubislaw place medical group - Suffolk netball league tables - Semantic feature analysis words - Cic case study stage 3 - Two quality control technicians measure the surface finish - N ai the story of a kung woman - Mackay consolidated industries pty ltd - Summmary of an article - Unit 2 IP PC - Decision making styles soc 110 - Allied bank payment tracking - Paul kotas net worth - Econometrics 20 multiple choice questions