The hydraulic fracturing is usually referred to the fracking
and also it is a gas and oil well development process. In the development
process many steps involves like injecting sand, water and other chemicals that
is carried out under high pressure into the bedrock formation through the well.
Through repeating this process the fractures can be extended and new fractures
can be created. By repeating the process new fractures can be created in the
rock for increasing the size, Connectivity and extent of the existing
fractures. This well simulation technique is used in low permeability rocks to
make a proper flow for the oil and gas to a well from the petroleum bearing
rock formation (Zhao, 2010).
MATLAB code for the calculation of all 1600 Fractures
(R.Masoomi, 2014)
Given data
Pore pressure= 2500 psi
Minimum horizontal stress around the lateral= 6500 psi
Minimum horizontal stress around = 6900 psi
Maximum horizontal stress = N57 0E
Fraction dip angle = 90o
Coefficient of fraction u= 0.6
function fracture2DP3D
G=2500; %
Shear modulus [psi]
v=.2; %
Drained Poisson's ratio
mu=1; %
Fluid viscosity [cp]
Zi=6500; %
In-situ stress [psi]
Q=75; %
Pumping rate [bbl/min]
h=3; %
Fracture height [ft]
rw=.3; %
Wellbore radius [ft]
tf=input('How much time is passed? \n hint best results
0.5<t<10 \n Enter time as min(0.25<=t):');
tic;
[Tkgd, pkgd]= KGD
(tf,G,Q,v,mu,Zi);
[Tpkn, ppkn]= PKN (tf,G,Q,v,mu,h);
[T3,p3]=TD(tf,G,Q,mu,Zi,rw,h);
figure(1)
set(1,'name','WELLBORE PRESSURE vs TIME in 2D and P3D
MODELS','numbertitle','off')
subplot(311)
plot(pkgd,Tkgd);
ylabel('Pressure [psi], KGD MODEL');
xlabel('time
[min]');
subplot(312)
plot(ppkn,Tpkn)
ylabel('net
Pressure [psi], PKN MODEL');
xlabel('time[min]');
subplot(313)
plot(p3,T3)
ylabel('Wellbore Pressure [psi], P3D')
xlabel('time
[min]')
toc
disp('Auf wieder sehen')
end
MATLAB Code for the Mohr’s Plot
function [sigma_mohr,tau_mohr,sigma_1,sigma_2,tau_1,tau_2...
,center_circle,phi]=mohr(sigma_x,sigma_y,tau_xy,gridsize)
phi=linspace(0,pi,gridsize);
sigma_mohr=(sigma_x+sigma_y)/2+(sigma_x-sigma_y)/2*cos(2*phi)+...
tau_xy*sin(2*phi);
tau_mohr=-(sigma_x-sigma_y)/2*sin(2*phi)+...
tau_xy*cos(2*phi);
sigma_1=(sigma_x+sigma_y)/2-sqrt(((sigma_x-sigma_y)/2)^2+tau_xy^2);
sigma_2=(sigma_x+sigma_y)/2+sqrt(((sigma_x-sigma_y)/2)^2+tau_xy^2);
tau_1=sqrt(((sigma_x-sigma_y)/2)^2+tau_xy^2);
tau_2=-tau_1;
center_circle=(sigma_x+sigma_y)/2;
%phi_p=atan(2*tau_xy/(sigma_x-sigma_y))/2;
end
sigma_x=150;sigma_y=50;tau_xy=50;
gridsize=1000;
[sigma_mohr,tau_mohr,sigma_1,sigma_2,tau_1,tau_2,...
center_circle,phi]=mohr(sigma_x,sigma_y,tau_xy,gridsize);
%%
figure;
plot(sigma_mohr,tau_mohr);
grid on;
axis equal;
xlabel('Normal Stess, MPa');
ylabel('Shear Stress, MPA');
title('Mohr 2D Circle');
hold on;
plot(sigma_1,0,'r*',sigma_2,0,'r*',...
center_circle,tau_1,'ro',center_circle,tau_2,'ro',...
center_circle,0,'r^');
%%
figure;
plot(phi*180/pi,sigma_mohr,'b',phi*180/pi,tau_mohr,'g');grid
on;
xlabel('Cut plane angle (deg)');
ylabel('Stress, MPA');
legend('Normal Stress','Shear Stress')
title('Mohr 2D Circle');
Reference of Critical aspect of hydraulic fracturing
R.Masoomi,
I. B. (2014). New Technique for Calculation of Well Flowing Performance in
Hydraulically Fractured Wells. International Journal of Petroleum and
Geoscience Engineering (IJPGE), ISSN , 2289-4713.
Zhao, X. (2010). Imaging the mechanics of hydraulic
fracturing in naturally-fractured reservoirs using induced seismicity and
numerical modeling. PhD diss.