Answer
x=3t+1; y=3-2t
At t = -2;
x=3(-2)+1; y=3-2(-2)
x=-5 ; y=7
At t = -1;
x=3(-1)+1; y=3-2(-1)
x=-2 ; y=5
t x y
-2 -5 7
-1 -2 5
0 1 3
1 4 1
2 7 -1
Sketch the curve
Rectangular-coordinate equation
x=3t+1
y=3-2t
3t=x-1
t=(x-1)/3
Put the value of t in y equation
y=3-2t
y=3-2((x-1)/3)
y=3-(2x-2)/6
y=(18-2x-2)/6
6y=18-2x-2
6y+2x-16=0
2x+6y-16=0
Question 2
x=4-6t; y=-3t
t x Y
0 4 0
1 -2 -3
2 -8 -6
3 -14 -9
4 -20 12
Sketch the curve
Rectangular-coordinate equation
x=4-6t
y=-3t
-6t=x-4
-t=(x-4)/6
t=(-x+4)/6
Put the value of t in y equation
y=-3t
y=-3((-x+4)/6)
y=(3x-12)/18
18y=3x-12
3x-18y-12=0
Question 3
x=t+1 ; y=t/(t+1)
t x y
-10 -9 1.11
-2 -1 2
-1.01 -0.01 101
-0.99 0.01 -99
0 1 0
1 2 0.5
10 11 0.90
Sketch the curve
Rectangular-coordinate equation
x=t+1
y=t/(t+1)
t=x-1
Put the value of t in y equation
y=t/(t+1)
y=(x-1)/(x-1+1)
y=(x-1)/x
yx=x-1
x-xy-1=0
Question 4
x=t^4+1 , y=t^2
Solution
t x y
-2 17 4
-1.5 6.06 2.25
-1 2 1
0 1 0
1 2 1
1.5 6.06 2.25
2 17 4
Sketch the curve
Rectangular-coordinate equation
x=t^4+1
y=t^2
t^4=x-1
〖(t^2)〗^2=x-1
Taking square root on both side
t^2=√(x-1)
Again Taking square root on both side
t=x-1
Put the value of t in y equation
y=t^2
y=(x-1)^2
y=x^2-2x+1
y-x^2+2x-1=0
Question 5
x=sec^2 t , y=cost
-π/2<t<π/2
cos^(-1) (y)= t
x=1/(Cos^2 (cos^(-1) (y)))
x=1/y^2
Solution
t x y
-5π/12 16 0.25
-π/3 4 0.5
-π/4 2.04 0.70
-π/6 1.35 0.86
0 1 1
π/6 1.35 0.86
π/4 2.04 0.707
π/3 4 0.5
5π/12 16 0.25
Sketch the curve
Question 6
x=1+3Sint , y=3Cost-4
Solution
t x y
0 1 -1
π/6 2.5 -1.40
π/4 3.12 -1.87
π/3 3.59 -2.5
π/2 4 -4
3π/4 3.12 -6.12
π 1 -7
5π/4 -1.12 -6.12
3π/2 -2 -4
7π/4 -1.12 -1.87
Sketch Curve
Rectangular-coordinate equation
x=1+3Sint ,
x-1=3Sint
Sint =(x-1)/3
y=3Cost-4
y+4=3Cost
Cost=(y+4)/3
sin^2 t+Cos^2 t=1
((x-1)/3)^2+((y+4)/3)^2=1
(x^2-2x+1)/9+(y^2+8y+16)/9=1
(x^2-2x+1+y^2+8y+16)/9=1
x^2-2x+1+y^2+8y+16=9
x^2+y^2-2x+8y+17=9
Chapter 8
Question 66
Find the indicated power by using De-Moivers Theorem
(1-i)^10
Solution
z=(1-i)^10
r= √((1)^2+(-1)^2 )
r= √2
θ= arctan(-1/1)
θ=-π/4
DeMoviers Theorem
z^n= [r(Cosθ+iSinθ)]^n=r^n (cosnθ+iSin(nθ)
z^n= [√2 (Cos(-π/4)+iSin(-π/4))]^10=〖√2〗^10 (cos(10) (π/4)+iSin(-10)(π/4)
(1-i)^10= 32i
Question 67
Find the indicated power by using De-Moivers Theorem
(1+i)^7
Solution
z=(1+i)^7
r= √((1)^2+(1)^2 )
r= √2
θ= arctan(1/1)
θ=π/4
DeMoviers Theorem
z^n= [r(Cosθ+iSinθ)]^n=r^n (cosnθ+iSin(nθ)
z^n= [√2 (Cos(-π/4)+iSin(-π/4))]^7=〖√2〗^7 (cos(7) (π/4)+iSin(7)(π/4)
z^n=〖√2〗^7 (√2/2+i(-√2/2)
(1+i)^7==11.31(√2/2+i(-√2/2)
(1+i)^7==7.99-7.99i
Question 72
(-1/2-√3/2 i)^15
Solution
z=(-1/2-√3/2 i)^15
r= √((-1/2)^2+(-√3/2)^2 )
r= 1
θ= arctan((-√3/2)/(-1/2))
θ=π/3
DeMoviers Theorem
z^n= [r(Cosθ+iSinθ)]^n=r^n (cosnθ+iSin(nθ)
z^n= [1(Cos(π/3)+iSin(π/3))]^15=1^15 (cos(15) (π/3)+iSin(15)(π/3)
=1(-1+0)
(1+i)^15= -1
Question 38
Path of projectile
v_o=2048ft/s; θ=30°
Solution
After how many seconds will bullet hit ground?
Formula of Component V_x ,V_y of velocity and components x, y of the displacement is given by;
V_y=V_o Sin(θ)-16t^2
Height of the projectile is given by the component y, and it reaches its maximum value when the component Vy is equal to zero.
V_o Sin(θ)-16t^2=0
t^2=(V_o Sin(θ))/16
t^2=(2048ft/s)Sin(30°)/16
1ft= 0.3048
t^2=19.5s
t=4.41sec
What is the maximum height attained by bullet?
y(4.41sec)=(2048ft/s)Sin(30°)-16〖(4.41sec)〗^2
y(4.41sec)=312.11-16〖(4.41sec)〗^2
y(4.41sec)=312.11-274.23
y(4.41sec)=37.87
y(4.41sec)=37.87
maximum height= y=8.58m
How far from the gun will bullet hit the ground?
S = V_o Cost
S = (2048ft/s)Cos(4.41sec)
S = 624.23Cos(4.41sec)
S = 622.38