Introduction of Wind data analysis
Wind data analysis is a technique to measure, predict and corelate the wind data sets. The climate reports are also considered to summarize the expected values for the average wind conditions with the different measurement points. There are different parameters to be calculated in the wind data analysis such as analysis of turbulence, shear and other meteorological parameters. In the present analysis annual percentage frequency for the different cities is considered. The main objective is to measure site parameters, plot Weibul distribution, maximum velocity, maximum energy availability, and capacity factors. The report include data for the efficient turbine to get nearly year-round power. The report is based on annual percentage frequency of wind speed groups and monthly mean wind speed for different stations.
Analysis based on annual percentage frequency
Table 1: Annual Percentage Frequency of Wind Speed Groups
St.No University Freq uency Percentage
Number 0-3 m/s 4-7 m/s 8-12 m/s 13-18 m/s 19-24 m/s 25-31 m/s 32-38 m/s
1 441100116 7 18 35 29 9 2 0
2 441105868 4 9 18 27 21 14 5
Site parameters of Wind data analysis
Site parameters include mean energy density and height of the hub. The selection of the wind turbine model is dependent on the mean energy output and capacity factor. It is based on the cumulative distribution function for the mean wind speed and height of the hub. Average wind velocity is represented as equation 1 below,
v_rmc = (1/n ∑_(i = 1)^n▒v_i^3 )^(1/3)
Variance σ^2 of the data is defined
σ^2 = 1/(n -1 ) ∑_(i = 1)^n▒(v_i - v^' )_ ^2
skewness =((1 )/(n-1 ) ∑_(i =1)^n▒(v_i - v) ^3)/σ^3
Kurtosis = ( (1 )/(n-1 ) ∑_(i =1)^n▒(v_i - v) ^4)/σ^( 4) - 3
k =(σ/V_m )^( - 1.06)
c = V_m/( γ (1+1/k) )
V_p = c ((k-1)/k)^(1/k)
V_( m) = c (k+2/k)^(1/k)
Number 0-3 m/s 4-7 m/s 8-12 m/s 13-18 m/s 19-24 m/s 25-31 m/s 32-38 m/s
Average 5.5 13.5 26.5 28 15 8 2.5
Variance 2.25 20.25 72.25 1 36 36 6.25
SD 2.12132 6.363961 12.02082 1.414214 8.485281 8.485281 3.535534
Skewness #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Kurtosis #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
k 2.8141 2.263051 2.359591 25.59495 1.856537 0.938046 0.686342
V_p 4.705486 10.43319 20.97856 27.95644 9.888536 #NUM! #NUM!
V_M 6.65614 17.85923 34.37442 28.08243 22.23849 27.01918 18.25525
Plot Weibull distribution of Wind data analysis
probability density function = f (v) = k/c (v/c)^(k - 1) exp( -(v/c)^k )
cumulative density function = e^( -(v_x/c)^k )
Number 0-3 m/s 4-7 m/s 8-12 m/s 13-18 m/s 19-24 m/s 25-31 m/s 32-38 m/s
f (v) 0.093255 0.022889 8.16E-06 2.33E-36 0.001629 0.001771 0.031568
Cumulative density function 0.31625 0.033555 0.001607 0.400875 0.011612 0.014681 0.17981
C_f 8.558871 5.787805 54.70476 1.31E+11 9.925713 #NUM! #NUM!
Figure 1: probability density function
Maximum velocity
Maximum energy availability of Wind data analysis
The maximum energy is a significant parameter for the wind energy assessment. The speed is calculated by using the equation below,
V_M = c ((k + 2)/k)^(( 1)/( k))
0-3 m/s 4-7 m/s 8-12 m/s 13-18 m/s 19-24 m/s 25-31 m/s 32-38 m/s
V_M 6.65614 17.85923 34.37442 28.08243 22.23849 27.01918 18.25525
Capacity factor of Wind data analysis
CF of a wind turbine is estimated by using the following expressions on the basis of Weibull distribution function becomes,
P_(e avg) = P_rated ((e^( (-V_c/c)^t ) - e^(- (v_rated/c)^k ))/((v_rated/c)^k- (V_(c )/c)^k ) - e^(- (V_c/c)^k ) )
C_f = P_(e avg)/P_rated
0-3 m/s 4-7 m/s 8-12 m/s 13-18 m/s 19-24 m/s 25-31 m/s 32-38 m/s
C_f 8.558871 5.787805 54.70476 1.31E+11 9.925713 #NUM! #NUM!
Monthly mean in different cities of Wind data analysis
Table 2: Monthly Mean Wind Speed For Different Stations
St.No University Monthly Mean Speeds
Number Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 441100116 7 7.8 7.2 7 7 8 7.3 7 8.8 9.1 6.3 7
2 441105868 4.1 4.3 4.8 5.2 5.3 5.8 5.5 5.9 5.2 4.3 4 4.3
Site parameters of Wind data analysis
c = V_m/( γ (1+1/k) )
V_p = c ((k-1)/k)^(1/k)
V_( m) = c (k+2/k)^(1/k)
Number Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average 5.55 6.05 6 6.1 6.15 6.9 6.4 6.45 7 6.7 5.15 5.65
Variance 2.1025 3.0625 1.44 0.81 0.7225 1.21 0.81 0.3025 3.24 5.76 1.3225 1.8225
SD 2.05061 2.474874 1.697056 1.272792 1.202082 1.555635 1.272792 0.777817 2.545584 3.394113 1.626346 1.909188
Skewness #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Kurtosis #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
k 2.948474 2.639902 3.941142 5.484052 5.887218 5.041716 5.777564 9.946921 2.999793 2.0929 3.496596 3.248799
V_p 4.822558 5.051618 5.570577 5.880132 5.958573 6.603976 6.192899 6.38166 6.114936 4.911943 4.677 5.045098
V_M 6.615473 7.490865 6.658535 6.455845 6.46323 7.372741 6.737904 6.569902 8.299592 9.231055 5.861246 6.549013
Plot Weibull distribution of Wind data analysis
Maximum velocity
Maximum energy availability
Capacity factor