Loading...

Messages

Proposals

Stuck in your homework and missing deadline?

Get Urgent Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework Writing

100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Assume x is available for state feedback. Design LQR control law by letting R=1 and choosing Q so that all the elements of the feedback gain K have absolute value less than 50.

Category: Engineering Paper Type: Report Writing Reference: APA Words: 500

Solution 

A= [■(0&1&0@0&0&1@-1&4&-3)]  ,     B= [■(0@0@2)]        C=[■(0&1&0@0&0&1)]

Pick Q [■(2000&0@0&2000)]  ,       R=1

K=lqr(A<B,C^'*Q*C,R);   K=[0.0000   47.2523   43.7714]

eig(A-B*K)={-89.5321,-0.0112,-0.9996)

MATLAB Simulink Model

Output response 

2). 2) Assume that only the output is available. Design an observer so that the poles of the observer are -5+5j,-5-j5,-10. Choose the observer gain so that all the elements have absolute value less than 80. Form a closed-loop system along with the LQR controller part 1). Plot y_1 (t) and y_2 (t) in same figure for t∈[0,20]

Solution 

Using approach of full dimensional estimators 

G_(n-q+1)^0= [■(C@CA)]= [■(■(0&1&0@0&0&1)@■(0&0&1@-1&4&-3))]

G_(n-q+1)^0=ρ(G_(n-q+1)^0 )=3 ,observable 

Given the poles of observer, -5+5j,-5-j5,-10 choose 

F= [■(-5&-5&0@5&-5&0@5&5&-10)]  ,L_0= [■(2&3@3&2@2&1)]

G_(n-ρ+1)^c= [L_0   FL_o ]= [■(■(2&3@3&2@2&1)&■(-25&-25@-5&5@-20&-10))]

G_(n-ρ+1)^c=3 →(F,L_o )Controllable 

T=lyap(-F,A,-L_0*C); L=inv(T)*L_o; 

L= [■(19.0148&-25.5544@15.1669&7.2402@-4.1955&1.8331)]

eig(A-L*C)= {-5.0000+5.0000i,-5.0000-5.0000i,-10.0000}

Simulink 

Output response 

Problem 3

A Cart with an inverted pendulum 

The control problems are; 

Stabilization: designed a feedback law u=Fx such that x(t)→0for x(0)close to origin 

A). Find the matrices A, B for state space equation 

(M+m) Y ̈+mI(θ ̈=u                       (1) ) ̈

Y ̈=1θ ̈=gθ                                   (2)

Solving equations 1 and 2 then we get; 

Y ̈=(-mg/M)θ+(1/M)u                (a)

θ ̈=(g/l=mg/Ml  )  θ-(1/Ml)u            (b)

y=x_1,y`=x_2,θ=x_3,θ`=x_4                                     

State space equations: 

x`=Ax+Bu,y(t)=Cx+Du

Solving the equation (a), and (b) in the state space equations, we get; 

A=[■(■(0&1@0&0)&■(0&0@-1.96&0)@■(0&0@0&0)&■(0&1@58.5&0))]

B= [■(■(0&0.2)&■(0&-1))]`

B). Design a feedback law u=F1x so that A+BF1 has eigenvalues at -3±j3;-6 and -8. Build a simulink model for the closed-loop linear system. Plot the response under initial condition x(0)=[-1.5,0,1,3].

Solution 

F= [■(■(-1&1)&■(0&0  ; ■(■(-1&-1)&■(0&0)))) ; ■(■(0&0)&■(-2.5&0)) ; ■(■(0&0)&■(0&-5))]

F =

   -1.0000    1.0000         0         0

   -1.0000   -1.0000         0         0

         0         0    2.5000         0

         0         0         0   -5.0000

K_o= [■(■(1&0)&■(-1&1))]

K_0= ■(■(1&0)&■(-1&1))

a=K_0*F 

a=■(■(-1&1)&■(2.5&-5))

b=a*F 

b=■(■(0&-2)&■(-6.25&25))

c=b*F 

c=■(■(2&2)&■(15.625&-125.000))

G=[K_O;a;b;c]

G= ■(■(-1&0@-1&1)&■(-1&1@2.5&-5)@■(0&-2@2&2)&■(-6.25&25@15.62&-125.00))

rank(G)= 4

A= [0 1 0 0; 0 0 -1.96 0 ;0 0 0 1;0 0 58.8 0]

A =

0    1.0000         0         0

0         0   -1.9600         0

0         0         0    1.0000

0         0   58.8000         0

B= [0; 0.2;0;-1]

B =

         0

    0.2000

         0

   -1.0000

T= lyap(A,-F,-B*K_0)

T =

   0.0006   -0.0834    0.0260   -0.0057

    0.0828    0.0839    0.0651    0.0284

   -0.0170    0.0006    0.0190   -0.0296

    0.0164   -0.0176    0.0476    0.1479

K= K_0 *inv (T) 

K =

    2.5510    2.0408  -52.7898   -4.0918

eig(A-B*K) 

ans =

  -5.0000 + 0.0000i

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

   2.5000 + 0.0000i

Design a feedback law 

Results 

Simulink model for the closed-loop linear system

3). Build a Simulink model for the original nonlinear system, verify that stabilization is achieved by u=F1x when x(0) is close to the origin. Find the maximal _o  so that the nonlinear system can be stabilized from x(0)=(0,0,_0,0).

Solutions 

%Simulink model for nonlinear system, 

function dx=ff(x) 

g= 9.8;

l=0.2;

M=5;

m=0.5;

x1= x(1);x2=x(2);

x3=x(3);x4=x(4);

u=x(6);

dx2=((m*l*x4^2*sin(x3)+u)-(m*g*cos(x3)*sin(x3)))/(M+m-m*cos(x3)^2);

dx4=((g*sin(x3)+(M+m))-(cos(x3)*(u+m*1*x4^2*sin(x3))))/(1*(M+mm*cos(x3)^2));

dx=[dx2;dx4];

end

4). . For x(0)=(0,0,compare the response y(t) and (t) for the linearized system and the nonlinear system under the same feedback u=F1x.

Solution 

Graph: 

Our Top Online Essay Writers.

Discuss your homework for free! Start chat

Top Rated Expert

ONLINE

Top Rated Expert

1869 Orders Completed

ECFX Market

ONLINE

Ecfx Market

63 Orders Completed

Assignments Hut

ONLINE

Assignments Hut

1428 Orders Completed