Part C
From the resistivity table below and from the ionic diffusivity parameters from the graph below, calculate the ohmic loss
For that case we have to know the values of each parameter
Area=A=80 cm^2
j=0.9 A/cm^2
lenght=0.004 cm
σ_i=0.15 ohm^(-1) cm^(-1)
σ_e=0.20 ohm^(-1) cm^(-1)
δ=0.005 cm
In the first step we will calculate the value of current
i=∫▒jds
i=j×A
i=0.9×80=72
Entropy
Entropy ∆S is energy changes in chemical reactions that is related to the heat flow q_rev in the reaction.
∆S^o = 2 (69.9)-[ 2 (131)+1 (205)]= -327 J/(K mol)
entropy = ∆S =q_rev/T
q_rev = n C_P ∆T
∆S = n C_P ln T_2/T_1
n_H=number of moles of hydrogen =2
n_(O_2 )=number of moles of oxygen=1
n_(H_2 O )=number of moles of water =2
C_P=specific heat of capacity at constant pressure
specific heat of capacity of hydrogen at constant pressure= 14300 J/(kg K)
specific heat of capacity of oxygen at constant pressure= 913 J/(kg K)
specific heat of capacity of water vapour at constant pressure= 2020 K/(kg K)
Enthalpy
∆H= ∫_(T_1)^(T_2)▒〖C_p (T)dT〗
∆H_2 = ∆H_f + nC_P ∆T
∆H_f = -241.826
Gibb’s free energy
G = H-TS
Maximum efficiency for each temperature of operation
Maximum efficiency is observed at 500 K.
B
Butler–Volmer equation for activation loss
η_e = -RT/(a n F) l n〖i_0 〗+ RT/(a n F) l n(i)
R=gas constant=8.314 J/(mol K)
F =96485 C/mol
a_(H_2 O) =1
i_0= the exchange current density
i=1 amp
n=2
Pb 2.5×10^(-13)
Zn 3.0×10^(-11)
Ag 4.0×10^(-7)
Ni 6.0×10^(-6)
Pt 5.0×10^(-4)
Pd 4.0×10^(-3)
T
|
Pb
|
Zn
|
Ag
|
Ni
|
Pt
|
Pd
|
300
|
0.52386654
|
0.313178
|
0.190413
|
0.155411
|
0.098244
|
0.249937
|
310
|
0.54132876
|
0.323618
|
0.19676
|
0.160591
|
0.101519
|
0.258268
|
320
|
0.55879098
|
0.334057
|
0.203108
|
0.165772
|
0.104794
|
0.266599
|
330
|
0.5762532
|
0.344496
|
0.209455
|
0.170952
|
0.108069
|
0.27493
|
340
|
0.59371542
|
0.354935
|
0.215802
|
0.176132
|
0.111343
|
0.283262
|
350
|
0.61117763
|
0.365375
|
0.222149
|
0.181313
|
0.114618
|
0.291593
|
360
|
0.62863985
|
0.375814
|
0.228496
|
0.186493
|
0.117893
|
0.299924
|
370
|
0.64610207
|
0.386253
|
0.234843
|
0.191673
|
0.121168
|
0.308255
|
380
|
0.66356429
|
0.396693
|
0.24119
|
0.196854
|
0.124443
|
0.316586
|
390
|
0.68102651
|
0.407132
|
0.247537
|
0.202034
|
0.127717
|
0.324918
|
400
|
0.69848873
|
0.417571
|
0.253884
|
0.207215
|
0.130992
|
0.333249
|
410
|
0.71595094
|
0.42801
|
0.260232
|
0.212395
|
0.134267
|
0.34158
|
420
|
0.73341316
|
0.43845
|
0.266579
|
0.217575
|
0.137542
|
0.349911
|
430
|
0.75087538
|
0.448889
|
0.272926
|
0.222756
|
0.140817
|
0.358243
|
440
|
0.7683376
|
0.459328
|
0.279273
|
0.227936
|
0.144091
|
0.366574
|
450
|
0.78579982
|
0.469768
|
0.28562
|
0.233116
|
0.147366
|
0.374905
|
460
|
0.80326203
|
0.480207
|
0.291967
|
0.238297
|
0.150641
|
0.383236
|
470
|
0.82072425
|
0.490646
|
0.298314
|
0.243477
|
0.153916
|
0.391567
|
480
|
0.83818647
|
0.501085
|
0.304661
|
0.248657
|
0.157191
|
0.399899
|
490
|
0.85564869
|
0.511525
|
0.311008
|
0.253838
|
0.160465
|
0.40823
|
500
|
0.87311091
|
0.521964
|
0.317356
|
0.259018
|
0.16374
|
0.416561
|
510
|
0.89057312
|
0.532403
|
0.323703
|
0.264199
|
0.167015
|
0.424892
|
520
|
0.90803534
|
0.542842
|
0.33005
|
0.269379
|
0.17029
|
0.433224
|
530
|
0.92549756
|
0.553282
|
0.336397
|
0.274559
|
0.173565
|
0.441555
|
540
|
0.94295978
|
0.563721
|
0.342744
|
0.27974
|
0.176839
|
0.449886
|
550
|
0.960422
|
0.57416
|
0.349091
|
0.28492
|
0.180114
|
0.458217
|
560
|
0.97788422
|
0.5846
|
0.355438
|
0.2901
|
0.183389
|
0.466548
|
570
|
0.99534643
|
0.595039
|
0.361785
|
0.295281
|
0.186664
|
0.47488
|
580
|
1.01280865
|
0.605478
|
0.368132
|
0.300461
|
0.189939
|
0.483211
|
590
|
1.03027087
|
0.615917
|
0.37448
|
0.305641
|
0.193213
|
0.491542
|
600
|
1.04773309
|
0.626357
|
0.380827
|
0.310822
|
0.196488
|
0.499873
|
610
|
1.06519531
|
0.636796
|
0.387174
|
0.316002
|
0.199763
|
0.508205
|
620
|
1.08265752
|
0.647235
|
0.393521
|
0.321183
|
0.203038
|
0.516536
|
630
|
1.10011974
|
0.657675
|
0.399868
|
0.326363
|
0.206313
|
0.524867
|
640
|
1.11758196
|
0.668114
|
0.406215
|
0.331543
|
0.209587
|
0.533198
|
650
|
1.13504418
|
0.678553
|
0.412562
|
0.336724
|
0.212862
|
0.541529
|
660
|
1.1525064
|
0.688992
|
0.418909
|
0.341904
|
0.216137
|
0.549861
|
670
|
1.16996861
|
0.699432
|
0.425256
|
0.347084
|
0.219412
|
0.558192
|
680
|
1.18743083
|
0.709871
|
0.431604
|
0.352265
|
0.222687
|
0.566523
|
690
|
1.20489305
|
0.72031
|
0.437951
|
0.357445
|
0.225962
|
0.574854
|
700
|
1.22235527
|
0.730749
|
0.444298
|
0.362625
|
0.229236
|
0.583186
|
710
|
1.23981749
|
0.741189
|
0.450645
|
0.367806
|
0.232511
|
0.591517
|
720
|
1.25727971
|
0.751628
|
0.456992
|
0.372986
|
0.235786
|
0.599848
|
730
|
1.27474192
|
0.762067
|
0.463339
|
0.378167
|
0.239061
|
0.608179
|
740
|
1.29220414
|
0.772507
|
0.469686
|
0.383347
|
0.242336
|
0.61651
|
750
|
1.30966636
|
0.782946
|
0.476033
|
0.388527
|
0.24561
|
0.624842
|
760
|
1.32712858
|
0.793385
|
0.48238
|
0.393708
|
0.248885
|
0.633173
|
770
|
1.3445908
|
0.803824
|
0.488728
|
0.398888
|
0.25216
|
0.641504
|
780
|
1.36205301
|
0.814264
|
0.495075
|
0.404068
|
0.255435
|
0.649835
|
790
|
1.37951523
|
0.824703
|
0.501422
|
0.409249
|
0.25871
|
0.658166
|
800
|
1.39697745
|
0.835142
|
0.507769
|
0.414429
|
0.261984
|
0.666498
|
810
|
1.41443967
|
0.845582
|
0.514116
|
0.419609
|
0.265259
|
0.674829
|
820
|
1.43190189
|
0.856021
|
0.520463
|
0.42479
|
0.268534
|
0.68316
|
830
|
1.4493641
|
0.86646
|
0.52681
|
0.42997
|
0.271809
|
0.691491
|
840
|
1.46682632
|
0.876899
|
0.533157
|
0.43515
|
0.275084
|
0.699823
|
850
|
1.48428854
|
0.887339
|
0.539504
|
0.440331
|
0.278358
|
0.708154
|
860
|
1.50175076
|
0.897778
|
0.545852
|
0.445511
|
0.281633
|
0.716485
|
870
|
1.51921298
|
0.908217
|
0.552199
|
0.450692
|
0.284908
|
0.724816
|
880
|
1.5366752
|
0.918656
|
0.558546
|
0.455872
|
0.288183
|
0.733147
|
890
|
1.55413741
|
0.929096
|
0.564893
|
0.461052
|
0.291458
|
0.741479
|
900
|
1.57159963
|
0.939535
|
0.57124
|
0.466233
|
0.294732
|
0.74981
|
910
|
1.58906185
|
0.949974
|
0.577587
|
0.471413
|
0.298007
|
0.758141
|
920
|
1.60652407
|
0.960414
|
0.583934
|
0.476593
|
0.301282
|
0.766472
|
930
|
1.62398629
|
0.970853
|
0.590281
|
0.481774
|
0.304557
|
0.774804
|
940
|
1.6414485
|
0.981292
|
0.596628
|
0.486954
|
0.307832
|
0.783135
|
950
|
1.65891072
|
0.991731
|
0.602976
|
0.492134
|
0.311106
|
0.791466
|
960
|
1.67637294
|
1.002171
|
0.609323
|
0.497315
|
0.314381
|
0.799797
|
970
|
1.69383516
|
1.01261
|
0.61567
|
0.502495
|
0.317656
|
0.808128
|
980
|
1.71129738
|
1.023049
|
0.622017
|
0.507676
|
0.320931
|
0.81646
|
990
|
1.72875959
|
1.033489
|
0.628364
|
0.512856
|
0.324206
|
0.824791
|
1000
|
1.74622181
|
1.043928
|
0.634711
|
0.518036
|
0.32748
|
0.833122
|
1010
|
1.76368403
|
1.054367
|
0.641058
|
0.523217
|
0.330755
|
0.841453
|
1020
|
1.78114625
|
1.064806
|
0.647405
|
0.528397
|
0.33403
|
0.849785
|
1030
|
1.79860847
|
1.075246
|
0.653752
|
0.533577
|
0.337305
|
0.858116
|
1040
|
1.81607069
|
1.085685
|
0.6601
|
0.538758
|
0.34058
|
0.866447
|
1050
|
1.8335329
|
1.096124
|
0.666447
|
0.543938
|
0.343854
|
0.874778
|
1060
|
1.85099512
|
1.106564
|
0.672794
|
0.549118
|
0.347129
|
0.883109
|
1070
|
1.86845734
|
1.117003
|
0.679141
|
0.554299
|
0.350404
|
0.891441
|
1080
|
1.88591956
|
1.127442
|
0.685488
|
0.559479
|
0.353679
|
0.899772
|
1090
|
1.90338178
|
1.137881
|
0.691835
|
0.56466
|
0.356954
|
0.908103
|
1100
|
1.92084399
|
1.148321
|
0.698182
|
0.56984
|
0.360228
|
0.916434
|
1110
|
1.93830621
|
1.15876
|
0.704529
|
0.57502
|
0.363503
|
0.924766
|
1120
|
1.95576843
|
1.169199
|
0.710876
|
0.580201
|
0.366778
|
0.933097
|
1130
|
1.97323065
|
1.179638
|
0.717224
|
0.585381
|
0.370053
|
0.941428
|
1140
|
1.99069287
|
1.190078
|
0.723571
|
0.590561
|
0.373328
|
0.949759
|
1150
|
2.00815508
|
1.200517
|
0.729918
|
0.595742
|
0.376603
|
0.95809
|
1160
|
2.0256173
|
1.210956
|
0.736265
|
0.600922
|
0.379877
|
0.966422
|
1170
|
2.04307952
|
1.221396
|
0.742612
|
0.606102
|
0.383152
|
0.974753
|
1180
|
2.06054174
|
1.231835
|
0.748959
|
0.611283
|
0.386427
|
0.983084
|
1190
|
2.07800396
|
1.242274
|
0.755306
|
0.616463
|
0.389702
|
0.991415
|
1200
|
2.09546618
|
1.252713
|
0.761653
|
0.621644
|
0.392977
|
0.999747
|
1210
|
2.11292839
|
1.263153
|
0.768
|
0.626824
|
0.396251
|
1.008078
|
1220
|
2.13039061
|
1.273592
|
0.774348
|
0.632004
|
0.399526
|
1.016409
|
1230
|
2.14785283
|
1.284031
|
0.780695
|
0.637185
|
0.402801
|
1.02474
|
1240
|
2.16531505
|
1.294471
|
0.787042
|
0.642365
|
0.406076
|
1.033071
|
1250
|
2.18277727
|
1.30491
|
0.793389
|
0.647545
|
0.409351
|
1.041403
|
1260
|
2.20023948
|
1.315349
|
0.799736
|
0.652726
|
0.412625
|
1.049734
|
1270
|
2.2177017
|
1.325788
|
0.806083
|
0.657906
|
0.4159
|
1.058065
|
1280
|
2.23516392
|
1.336228
|
0.81243
|
0.663086
|
0.419175
|
1.066396
|
1290
|
2.25262614
|
1.346667
|
0.818777
|
0.668267
|
0.42245
|
1.074728
|
1300
|
2.27008836
|
1.357106
|
0.825124
|
0.673447
|
0.425725
|
1.083059
|
1310
|
2.28755057
|
1.367545
|
0.831472
|
0.678628
|
0.428999
|
1.09139
|
1320
|
2.30501279
|
1.377985
|
0.837819
|
0.683808
|
0.432274
|
1.099721
|
1330
|
2.32247501
|
1.388424
|
0.844166
|
0.688988
|
0.435549
|
1.108052
|
1340
|
2.33993723
|
1.398863
|
0.850513
|
0.694169
|
0.438824
|
1.116384
|
1350
|
2.35739945
|
1.409303
|
0.85686
|
0.699349
|
0.442099
|
1.124715
|
1360
|
2.37486167
|
1.419742
|
0.863207
|
0.704529
|
0.445373
|
1.133046
|
1370
|
2.39232388
|
1.430181
|
0.869554
|
0.70971
|
0.448648
|
1.141377
|
1380
|
2.4097861
|
1.44062
|
0.875901
|
0.71489
|
0.451923
|
1.149709
|
1390
|
2.42724832
|
1.45106
|
0.882248
|
0.72007
|
0.455198
|
1.15804
|
1400
|
2.44471054
|
1.461499
|
0.888596
|
0.725251
|
0.458473
|
1.166371
|
1410
|
2.46217276
|
1.471938
|
0.894943
|
0.730431
|
0.461747
|
1.174702
|
1420
|
2.47963497
|
1.482378
|
0.90129
|
0.735612
|
0.465022
|
1.183033
|
1430
|
2.49709719
|
1.492817
|
0.907637
|
0.740792
|
0.468297
|
1.191365
|
1440
|
2.51455941
|
1.503256
|
0.913984
|
0.745972
|
0.471572
|
1.199696
|
1450
|
2.53202163
|
1.513695
|
0.920331
|
0.751153
|
0.474847
|
1.208027
|
1460
|
2.54948385
|
1.524135
|
0.926678
|
0.756333
|
0.478121
|
1.216358
|
1470
|
2.56694606
|
1.534574
|
0.933025
|
0.761513
|
0.481396
|
1.22469
|
1480
|
2.58440828
|
1.545013
|
0.939372
|
0.766694
|
0.484671
|
1.233021
|
1490
|
2.6018705
|
1.555452
|
0.94572
|
0.771874
|
0.487946
|
1.241352
|
1500
|
2.61933272
|
1.565892
|
0.952067
|
0.777054
|
0.491221
|
1.249683
|
1510
|
2.63679494
|
1.576331
|
0.958414
|
0.782235
|
0.494495
|
1.258014
|
Part C
From the resistivity table below and from the ionic diffusivity parameters from the graph below, calculate the ohmic loss
For that case we have to know the values of each parameter
Area=A=80 cm^2
j=0.9 A/cm^2
lenght=0.004 cm
σ_i=0.15 ohm^(-1) cm^(-1)
σ_e=0.20 ohm^(-1) cm^(-1)
δ=0.005 cm
In the first step we will calculate the value of current
i=∫▒jds
i=j×A
i=0.9×80=72
Ag
|
Ni
|
Pt
|
Pd
|
Pb
|
Zn
|
2.27E+03
|
5.16E+02
|
3.41E+02
|
3.61E+02
|
1.65E+02
|
6.11E+02
|
7.93E+03
|
1.80E+03
|
1.19E+03
|
1.26E+03
|
5.76E+02
|
2.14E+03
|
1.36E+04
|
3.09E+03
|
2.04E+03
|
2.17E+03
|
9.88E+02
|
3.67E+03
|
1.93E+04
|
4.38E+03
|
2.89E+03
|
3.07E+03
|
1.40E+03
|
5.19E+03
|
2.49E+04
|
5.67E+03
|
3.75E+03
|
3.97E+03
|
1.81E+03
|
6.72E+03
|
3.06E+04
|
6.96E+03
|
4.60E+03
|
4.88E+03
|
2.22E+03
|
8.25E+03
|
3.62E+04
|
8.25E+03
|
5.45E+03
|
5.78E+03
|
2.63E+03
|
9.78E+03
|
4.19E+04
|
9.54E+03
|
6.30E+03
|
6.68E+03
|
3.04E+03
|
1.13E+04
|
4.76E+04
|
1.08E+04
|
7.15E+03
|
7.59E+03
|
3.46E+03
|
1.28E+04
|
5.32E+04
|
1.21E+04
|
8.00E+03
|
8.49E+03
|
3.87E+03
|
1.44E+04
|
5.89E+04
|
1.34E+04
|
8.85E+03
|
9.39E+03
|
4.28E+03
|
1.59E+04
|
6.46E+04
|
1.47E+04
|
9.71E+03
|
1.03E+04
|
4.69E+03
|
1.74E+04
|
7.02E+04
|
1.60E+04
|
1.06E+04
|
1.12E+04
|
5.10E+03
|
1.89E+04
|
7.59E+04
|
1.73E+04
|
1.14E+04
|
1.21E+04
|
5.51E+03
|
2.05E+04
|
8.15E+04
|
1.86E+04
|
1.23E+04
|
1.30E+04
|
5.92E+03
|
2.20E+04
|
8.72E+04
|
1.99E+04
|
1.31E+04
|
1.39E+04
|
6.34E+03
|
2.35E+04
|
9.29E+04
|
2.11E+04
|
1.40E+04
|
1.48E+04
|
6.75E+03
|
2.51E+04
|
9.85E+04
|
2.24E+04
|
1.48E+04
|
1.57E+04
|
7.16E+03
|
2.66E+04
|
1.04E+05
|
2.37E+04
|
1.57E+04
|
1.66E+04
|
7.57E+03
|
2.81E+04
|
1.10E+05
|
2.50E+04
|
1.65E+04
|
1.75E+04
|
7.98E+03
|
2.96E+04
|
1.16E+05
|
2.63E+04
|
1.74E+04
|
1.84E+04
|
8.39E+03
|
3.12E+04
|
1.21E+05
|
2.76E+04
|
1.82E+04
|
1.93E+04
|
8.80E+03
|
3.27E+04
|
1.27E+05
|
2.89E+04
|
1.91E+04
|
2.02E+04
|
9.22E+03
|
3.42E+04
|
1.33E+05
|
3.02E+04
|
1.99E+04
|
2.11E+04
|
9.63E+03
|
3.58E+04
|
1.38E+05
|
3.15E+04
|
2.08E+04
|
2.20E+04
|
1.00E+04
|
3.73E+04
|
1.44E+05
|
3.27E+04
|
2.16E+04
|
2.29E+04
|
1.04E+04
|
3.88E+04
|
1.49E+05
|
3.40E+04
|
2.25E+04
|
2.38E+04
|
1.09E+04
|
4.03E+04
|
1.55E+05
|
3.53E+04
|
2.33E+04
|
2.47E+04
|
1.13E+04
|
4.19E+04
|
1.61E+05
|
3.66E+04
|
2.42E+04
|
2.56E+04
|
1.17E+04
|
4.34E+04
|
1.66E+05
|
3.79E+04
|
2.50E+04
|
2.65E+04
|
1.21E+04
|
4.49E+04
|
1.72E+05
|
3.92E+04
|
2.59E+04
|
2.75E+04
|
1.25E+04
|
4.64E+04
|
1.78E+05
|
4.05E+04
|
2.67E+04
|
2.84E+04
|
1.29E+04
|
4.80E+04
|
1.83E+05
|
4.18E+04
|
2.76E+04
|
2.93E+04
|
1.33E+04
|
4.95E+04
|
1.89E+05
|
4.31E+04
|
2.84E+04
|
3.02E+04
|
1.37E+04
|
5.10E+04
|
1.95E+05
|
4.43E+04
|
2.93E+04
|
3.11E+04
|
1.42E+04
|
5.26E+04
|
2.00E+05
|
4.56E+04
|
3.01E+04
|
3.20E+04
|
1.46E+04
|
5.41E+04
|
2.06E+05
|
4.69E+04
|
3.10E+04
|
3.29E+04
|
1.50E+04
|
5.56E+04
|
2.12E+05
|
4.82E+04
|
3.18E+04
|
3.38E+04
|
1.54E+04
|
5.71E+04
|
2.17E+05
|
4.95E+04
|
3.27E+04
|
3.47E+04
|
1.58E+04
|
5.87E+04
|
2.23E+05
|
5.08E+04
|
3.35E+04
|
3.56E+04
|
1.62E+04
|
6.02E+04
|
2.29E+05
|
5.21E+04
|
3.44E+04
|
3.65E+04
|
1.66E+04
|
6.17E+04
|
2.34E+05
|
5.34E+04
|
3.52E+04
|
3.74E+04
|
1.70E+04
|
6.33E+04
|
2.40E+05
|
5.47E+04
|
3.61E+04
|
3.83E+04
|
1.74E+04
|
6.48E+04
|
2.46E+05
|
5.59E+04
|
3.69E+04
|
3.92E+04
|
1.79E+04
|
6.63E+04
|
2.51E+05
|
5.72E+04
|
3.78E+04
|
4.01E+04
|
1.83E+04
|
6.78E+04
|
2.57E+05
|
5.85E+04
|
3.87E+04
|
4.10E+04
|
1.87E+04
|
6.94E+04
|
2.63E+05
|
5.98E+04
|
3.95E+04
|
4.19E+04
|
1.91E+04
|
7.09E+04
|
2.68E+05
|
6.11E+04
|
4.04E+04
|
4.28E+04
|
1.95E+04
|
7.24E+04
|
2.74E+05
|
6.24E+04
|
4.12E+04
|
4.37E+04
|
1.99E+04
|
7.39E+04
|
According to the given scenario Ag metal
is the best one because it contain extremely low ohmic losses. It is use to
this configuration. The electrical conductivity of silver is high due to this
the resistivity loss of silver is low. This is because the voltages are
directly proportional to the resistance.
This can be explained through the help of graph
Part D
Determine the concentration of losses using
η_conc=RT/ηF (1+1/α) ln(j_L/(j_l-j))
j_L=nF D^eff [(c_R^0)/δ]
For that case
Part D
Determine the concentration of losses using
η_conc=RT/ηF (1+1/α) ln(j_L/(j_l-j))
j_L=nF D^eff [(c_R^0)/δ]
For that case
B
|
J
anode
|
j
cathode
|
|
Concentration
losses
|
0.06
|
10
|
1
|
|
0.143813746
|
0.07
|
12
|
2
|
|
0.047305898
|
0.08
|
14
|
3
|
|
0.033849603
|
0.09
|
16
|
4
|
|
0.028150761
|
0.1
|
18
|
5
|
|
0.024974423
|
0.11
|
20
|
6
|
|
0.022941915
|
0.12
|
22
|
7
|
|
0.021526895
|
0.13
|
24
|
8
|
|
0.020483836
|
0.14
|
26
|
9
|
|
0.019682489
|
0.15
|
28
|
10
|
|
0.019047219
|
0.16
|
30
|
11
|
|
0.018531049
|
0.17
|
32
|
12
|
|
0.018103236
|
0.18
|
34
|
13
|
|
0.017742806
|
0.19
|
36
|
14
|
|
0.017434952
|
0.2
|
38
|
15
|
|
0.017168919
|
0.21
|
40
|
16
|
|
0.016936703
|
0.22
|
42
|
17
|
|
0.016732225
|
0.23
|
44
|
18
|
|
0.016550784
|
0.24
|
46
|
19
|
|
0.016388686
|
0.25
|
48
|
20
|
|
0.016242987
|
0.26
|
50
|
21
|
|
0.016111314
|
0.27
|
52
|
22
|
|
0.015991731
|
0.28
|
54
|
23
|
|
0.015882643
|
0.29
|
56
|
24
|
|
0.015782724
|
0.3
|
58
|
25
|
|
0.015690863
|
0.31
|
60
|
26
|
|
0.015606122
|
0.32
|
62
|
27
|
|
0.015527703
|
0.33
|
64
|
28
|
|
0.015454922
|
0.34
|
66
|
29
|
|
0.015387192
|
0.35
|
68
|
30
|
|
0.015324004
|
0.36
|
70
|
31
|
|
0.015264916
|
0.37
|
72
|
32
|
|
0.01520954
|
0.38
|
74
|
33
|
|
0.015157538
|
0.39
|
76
|
34
|
|
0.015108609
|
0.4
|
78
|
35
|
|
0.015062489
|
0.41
|
80
|
36
|
|
0.015018943
|
0.42
|
82
|
37
|
|
0.01497776
|
0.43
|
84
|
38
|
|
0.014938753
|
0.44
|
86
|
39
|
|
0.014901755
|
0.45
|
88
|
40
|
|
0.014866613
|
0.46
|
90
|
41
|
|
0.014833191
|
0.47
|
92
|
42
|
|
0.014801367
|
0.48
|
94
|
43
|
|
0.014771027
|
0.49
|
96
|
44
|
|
0.014742071
|
0.5
|
98
|
45
|
|
0.014714405
|
0.51
|
100
|
46
|
|
0.014687946
|
0.52
|
102
|
47
|
|
0.014662616
|
0.53
|
104
|
48
|
|
0.014638345
|
0.54
|
106
|
49
|
|
0.014615066
|
0.55
|
108
|
50
|
|
0.014592721
|
0.56
|
110
|
51
|
|
0.014571255
|
0.57
|
112
|
52
|
|
0.014550616
|
0.58
|
114
|
53
|
|
0.014530757
|
0.59
|
116
|
54
|
|
0.014511636
|
0.6
|
118
|
55
|
|
0.014493212
|
0.61
|
120
|
56
|
|
0.014475447
|
0.62
|
122
|
57
|
|
0.014458307
|
0.63
|
124
|
58
|
|
0.014441759
|
0.64
|
126
|
59
|
|
0.014425772
|
0.65
|
128
|
60
|
|
0.01441032
|
0.66
|
130
|
61
|
|
0.014395376
|
0.67
|
132
|
62
|
|
0.014380914
|
0.68
|
134
|
63
|
|
0.014366912
|
0.69
|
136
|
64
|
|
0.014353349
|
0.7
|
138
|
65
|
|
0.014340203
|
0.71
|
140
|
66
|
|
0.014327457
|
0.72
|
142
|
67
|
|
0.014315091
|
0.73
|
144
|
68
|
|
0.01430309
|
0.74
|
146
|
69
|
|
0.014291437
|
0.75
|
148
|
70
|
|
0.014280118
|
0.76
|
150
|
71
|
|
0.014269118
|
0.77
|
152
|
72
|
|
0.014258424
|
0.78
|
154
|
73
|
|
0.014248023
|
0.79
|
156
|
74
|
|
0.014237904
|
0.8
|
158
|
75
|
|
0.014228055
|
0.81
|
160
|
76
|
|
0.014218466
|
0.82
|
162
|
77
|
|
0.014209126
|
0.83
|
164
|
78
|
|
0.014200025
|
0.84
|
166
|
79
|
|
0.014191156
|
0.85
|
168
|
80
|
|
0.014182508
|
0.86
|
170
|
81
|
|
0.014174074
|
0.87
|
172
|
82
|
|
0.014165846
|
0.88
|
174
|
83
|
|
0.014157817
|
0.89
|
176
|
84
|
|
0.014149979
|
0.9
|
178
|
85
|
|
0.014142326
|
0.91
|
180
|
86
|
|
0.01413485
|
0.92
|
182
|
87
|
|
0.014127547
|
0.93
|
184
|
88
|
|
0.01412041
|
0.94
|
186
|
89
|
|
0.014113433
|
0.95
|
188
|
90
|
|
0.014106612
|
0.96
|
190
|
91
|
|
0.014099941
|
0.97
|
192
|
92
|
|
0.014093415
|
0.98
|
194
|
93
|
|
0.014087029
|
0.99
|
196
|
94
|
|
0.014080779
|
1
|
198
|
95
|
|
0.014074662
|
1.01
|
200
|
96
|
|
0.014068671
|
1.02
|
202
|
97
|
|
0.014062804
|
1.03
|
204
|
98
|
|
0.014057057
|
1.04
|
206
|
99
|
|
0.014051427
|
1.05
|
208
|
100
|
|
0.014045909
|
1.06
|
210
|
101
|
|
0.0140405
|
1.07
|
212
|
102
|
|
0.014035198
|
1.08
|
214
|
103
|
|
0.014029998
|
1.09
|
216
|
104
|
|
0.014024899
|
1.1
|
218
|
105
|
|
0.014019896
|
1.11
|
220
|
106
|
|
0.014014989
|
1.12
|
222
|
107
|
|
0.014010173
|
1.13
|
224
|
108
|
|
0.014005446
|
1.14
|
226
|
109
|
|
0.014000806
|
1.15
|
228
|
110
|
|
0.013996251
|
1.16
|
230
|
111
|
|
0.013991777
|
1.17
|
232
|
112
|
|
0.013987384
|
1.18
|
234
|
113
|
|
0.013983068
|
1.19
|
236
|
114
|
|
0.013978829
|
1.2
|
238
|
115
|
|
0.013974663
|
1.21
|
240
|
116
|
|
0.013970568
|
1.22
|
242
|
117
|
|
0.013966544
|
1.23
|
244
|
118
|
|
0.013962588
|
1.24
|
246
|
119
|
|
0.013958699
|
1.25
|
248
|
120
|
|
0.013954874
|
1.26
|
250
|
121
|
|
0.013951113
|
1.27
|
252
|
122
|
|
0.013947414
|
1.28
|
254
|
123
|
|
0.013943774
|
1.29
|
256
|
124
|
|
0.013940194
|
1.3
|
258
|
125
|
|
0.01393667
|
1.31
|
260
|
126
|
|
0.013933203
|
temperature
|
E_thermal
|
n_act
|
n_ohmic
|
n_conc
|
V
|
300
|
143000
|
0.190413322
|
2.27E+03
|
0.143813746
|
1.41E+05
|
310
|
143000
|
0.196760433
|
7.93E+03
|
0.047305898
|
1.35E+05
|
320
|
143000
|
0.203107544
|
1.36E+04
|
0.033849603
|
1.29E+05
|
330
|
143000
|
0.209454654
|
1.93E+04
|
0.028150761
|
1.24E+05
|
340
|
143000
|
0.215801765
|
2.49E+04
|
0.024974423
|
1.18E+05
|
350
|
143000
|
0.222148876
|
3.06E+04
|
0.022941915
|
1.12E+05
|
360
|
143000
|
0.228495987
|
3.62E+04
|
0.021526895
|
1.07E+05
|
370
|
143000
|
0.234843097
|
4.19E+04
|
0.020483836
|
1.01E+05
|
380
|
143000
|
0.241190208
|
4.76E+04
|
0.019682489
|
9.54E+04
|
390
|
143000
|
0.247537319
|
5.32E+04
|
0.019047219
|
8.98E+04
|
400
|
143000
|
0.25388443
|
5.89E+04
|
0.018531049
|
8.41E+04
|
410
|
143000
|
0.26023154
|
6.46E+04
|
0.018103236
|
7.84E+04
|
420
|
143000
|
0.266578651
|
7.02E+04
|
0.017742806
|
7.28E+04
|
430
|
143000
|
0.272925762
|
7.59E+04
|
0.017434952
|
6.71E+04
|
440
|
143000
|
0.279272873
|
8.15E+04
|
0.017168919
|
6.15E+04
|
450
|
143000
|
0.285619983
|
8.72E+04
|
0.016936703
|
5.58E+04
|
460
|
143000
|
0.291967094
|
9.29E+04
|
0.016732225
|
5.01E+04
|
470
|
143000
|
0.298314205
|
9.85E+04
|
0.016550784
|
4.45E+04
|
480
|
143000
|
0.304661315
|
1.04E+05
|
0.016388686
|
3.88E+04
|
490
|
143000
|
0.311008426
|
1.10E+05
|
0.016242987
|
3.31E+04
|
500
|
143000
|
0.317355537
|
1.16E+05
|
0.016111314
|
2.75E+04
|
510
|
143000
|
0.323702648
|
1.21E+05
|
0.015991731
|
2.18E+04
|
520
|
143000
|
0.330049758
|
1.27E+05
|
0.015882643
|
1.62E+04
|
530
|
143000
|
0.336396869
|
1.33E+05
|
0.015782724
|
1.05E+04
|
540
|
143000
|
0.34274398
|
1.38E+05
|
0.015690863
|
4.83E+03
|
550
|
143000
|
0.349091091
|
1.44E+05
|
0.015606122
|
-8.34E+02
|
560
|
143000
|
0.355438201
|
1.49E+05
|
0.015527703
|
-6.50E+03
|
570
|
143000
|
0.361785312
|
1.55E+05
|
0.015454922
|
-1.22E+04
|
580
|
143000
|
0.368132423
|
1.61E+05
|
0.015387192
|
-1.78E+04
|
590
|
143000
|
0.374479534
|
1.66E+05
|
0.015324004
|
-2.35E+04
|
600
|
143000
|
0.380826644
|
1.72E+05
|
0.015264916
|
-2.91E+04
|
610
|
143000
|
0.387173755
|
1.78E+05
|
0.01520954
|
-3.48E+04
|
620
|
143000
|
0.393520866
|
1.83E+05
|
0.015157538
|
-4.05E+04
|
630
|
143000
|
0.399867977
|
1.89E+05
|
0.015108609
|
-4.61E+04
|
640
|
143000
|
0.406215087
|
1.95E+05
|
0.015062489
|
-5.18E+04
|
650
|
143000
|
0.412562198
|
2.00E+05
|
0.015018943
|
-5.75E+04
|
660
|
143000
|
0.418909309
|
2.06E+05
|
0.01497776
|
-6.31E+04
|
670
|
143000
|
0.425256419
|
2.12E+05
|
0.014938753
|
-6.88E+04
|
680
|
143000
|
0.43160353
|
2.17E+05
|
0.014901755
|
-7.45E+04
|
690
|
143000
|
0.437950641
|
2.23E+05
|
0.014866613
|
-8.01E+04
|
700
|
143000
|
0.444297752
|
2.29E+05
|
0.014833191
|
-8.58E+04
|
710
|
143000
|
0.450644862
|
2.34E+05
|
0.014801367
|
-9.14E+04
|
720
|
143000
|
0.456991973
|
2.40E+05
|
0.014771027
|
-9.71E+04
|
730
|
143000
|
0.463339084
|
2.46E+05
|
0.014742071
|
-1.03E+05
|
740
|
143000
|
0.469686195
|
2.51E+05
|
0.014714405
|
-1.08E+05
|
750
|
143000
|
0.476033305
|
2.57E+05
|
0.014687946
|
-1.14E+05
|
760
|
143000
|
0.482380416
|
2.63E+05
|
0.014662616
|
-1.20E+05
|
770
|
143000
|
0.488727527
|
2.68E+05
|
0.014638345
|
-1.25E+05
|
780
|
143000
|
0.495074638
|
2.74E+05
|
0.014615066
|
-1.31E+05
|
790
|
143000
|
0.501421748
|
2.80E+05
|
0.014592721
|
-1.37E+05
|
800
|
143000
|
0.507768859
|
2.85E+05
|
0.014571255
|
-1.42E+05
|
810
|
143000
|
0.51411597
|
2.91E+05
|
0.014550616
|
-1.48E+05
|
820
|
143000
|
0.520463081
|
2.97E+05
|
0.014530757
|
-1.54E+05
|
830
|
143000
|
0.526810191
|
3.02E+05
|
0.014511636
|
-1.59E+05
|
840
|
143000
|
0.533157302
|
3.08E+05
|
0.014493212
|
-1.65E+05
|
850
|
143000
|
0.539504413
|
3.14E+05
|
0.014475447
|
-1.71E+05
|
860
|
143000
|
0.545851524
|
3.19E+05
|
0.014458307
|
-1.76E+05
|
870
|
143000
|
0.552198634
|
3.25E+05
|
0.014441759
|
-1.82E+05
|
880
|
143000
|
0.558545745
|
3.31E+05
|
0.014425772
|
-1.88E+05
|
890
|
143000
|
0.564892856
|
3.36E+05
|
0.01441032
|
-1.93E+05
|
900
|
143000
|
0.571239966
|
3.42E+05
|
0.014395376
|
-1.99E+05
|
910
|
143000
|
0.577587077
|
3.48E+05
|
0.014380914
|
-2.05E+05
|
920
|
143000
|
0.583934188
|
3.53E+05
|
0.014366912
|
-2.10E+05
|
930
|
143000
|
0.590281299
|
3.59E+05
|
0.014353349
|
-2.16E+05
|
940
|
143000
|
0.596628409
|
3.65E+05
|
0.014340203
|
-2.22E+05
|
950
|
143000
|
0.60297552
|
3.70E+05
|
0.014327457
|
-2.27E+05
|
960
|
143000
|
0.609322631
|
3.76E+05
|
0.014315091
|
-2.33E+05
|
970
|
143000
|
0.615669742
|
3.82E+05
|
0.01430309
|
-2.39E+05
|
980
|
143000
|
0.622016852
|
3.87E+05
|
0.014291437
|
-2.44E+05
|
990
|
143000
|
0.628363963
|
3.93E+05
|
0.014280118
|
-2.50E+05
|
1000
|
143000
|
0.634711074
|
3.99E+05
|
0.014269118
|
-2.56E+05
|
1010
|
143000
|
0.641058185
|
4.04E+05
|
0.014258424
|
-2.61E+05
|
1020
|
143000
|
0.647405295
|
4.10E+05
|
0.014248023
|
-2.67E+05
|
1030
|
143000
|
0.653752406
|
4.16E+05
|
0.014237904
|
-2.73E+05
|
1040
|
143000
|
0.660099517
|
4.21E+05
|
0.014228055
|
-2.78E+05
|
1050
|
143000
|
0.666446628
|
4.27E+05
|
0.014218466
|
-2.84E+05
|
1060
|
143000
|
0.672793738
|
4.33E+05
|
0.014209126
|
-2.90E+05
|
1070
|
143000
|
0.679140849
|
4.38E+05
|
0.014200025
|
-2.95E+05
|
1080
|
143000
|
0.68548796
|
4.44E+05
|
0.014191156
|
-3.01E+05
|
1090
|
143000
|
0.691835071
|
4.50E+05
|
0.014182508
|
-3.07E+05
|
1100
|
143000
|
0.698182181
|
4.55E+05
|
0.014174074
|
-3.12E+05
|
1110
|
143000
|
0.704529292
|
4.61E+05
|
0.014165846
|
-3.18E+05
|
1120
|
143000
|
0.710876403
|
4.67E+05
|
0.014157817
|
-3.24E+05
|
1130
|
143000
|
0.717223513
|
4.72E+05
|
0.014149979
|
-3.29E+05
|
1140
|
143000
|
0.723570624
|
4.78E+05
|
0.014142326
|
-3.35E+05
|
1150
|
143000
|
0.729917735
|
4.84E+05
|
0.01413485
|
-3.41E+05
|
1160
|
143000
|
0.736264846
|
4.89E+05
|
0.014127547
|
-3.46E+05
|
1170
|
143000
|
0.742611956
|
4.95E+05
|
0.01412041
|
-3.52E+05
|
1180
|
143000
|
0.748959067
|
5.01E+05
|
0.014113433
|
-3.58E+05
|
1190
|
143000
|
0.755306178
|
5.06E+05
|
0.014106612
|
-3.63E+05
|
1200
|
143000
|
0.761653289
|
5.12E+05
|
0.014099941
|
-3.69E+05
|
1210
|
143000
|
0.768000399
|
5.18E+05
|
0.014093415
|
-3.75E+05
|
1220
|
143000
|
0.77434751
|
5.23E+05
|
0.014087029
|
-3.80E+05
|
1230
|
143000
|
0.780694621
|
5.29E+05
|
0.014080779
|
-3.86E+05
|
1240
|
143000
|
0.787041732
|
5.35E+05
|
0.014074662
|
-3.92E+05
|
1250
|
143000
|
0.793388842
|
5.40E+05
|
0.014068671
|
-3.97E+05
|
1260
|
143000
|
0.799735953
|
5.46E+05
|
0.014062804
|
-4.03E+05
|
1270
|
143000
|
0.806083064
|
5.52E+05
|
0.014057057
|
-4.09E+05
|
1280
|
143000
|
0.812430175
|
5.57E+05
|
0.014051427
|
-4.14E+05
|
1290
|
143000
|
0.818777285
|
5.63E+05
|
0.014045909
|
-4.20E+05
|
1300
|
143000
|
0.825124396
|
5.69E+05
|
0.0140405
|
-4.26E+05
|
1310
|
143000
|
0.831471507
|
5.74E+05
|
0.014035198
|
-4.31E+05
|
1320
|
143000
|
0.837818618
|
5.80E+05
|
0.014029998
|
-4.37E+05
|
1330
|
143000
|
0.844165728
|
5.86E+05
|
0.014024899
|
-4.43E+05
|
1340
|
143000
|
0.850512839
|
5.91E+05
|
0.014019896
|
-4.48E+05
|
1350
|
143000
|
0.85685995
|
5.97E+05
|
0.014014989
|
-4.54E+05
|
1360
|
143000
|
0.86320706
|
6.03E+05
|
0.014010173
|
-4.60E+05
|
1370
|
143000
|
0.869554171
|
6.08E+05
|
0.014005446
|
-4.65E+05
|
1380
|
143000
|
0.875901282
|
6.14E+05
|
0.014000806
|
-4.71E+05
|
1390
|
143000
|
0.882248393
|
6.20E+05
|
0.013996251
|
-4.77E+05
|
1400
|
143000
|
0.888595503
|
6.25E+05
|
0.013991777
|
-4.82E+05
|
1410
|
143000
|
0.894942614
|
6.31E+05
|
0.013987384
|
-4.88E+05
|
1420
|
143000
|
0.901289725
|
6.36E+05
|
0.013983068
|
-4.93E+05
|
1430
|
143000
|
0.907636836
|
6.42E+05
|
0.013978829
|
-4.99E+05
|
1440
|
143000
|
0.913983946
|
6.48E+05
|
0.013974663
|
-5.05E+05
|
1450
|
143000
|
0.920331057
|
6.53E+05
|
0.013970568
|
-5.10E+05
|
1460
|
143000
|
0.926678168
|
6.59E+05
|
0.013966544
|
-5.16E+05
|
1470
|
143000
|
0.933025279
|
6.65E+05
|
0.013962588
|
-5.22E+05
|
1480
|
143000
|
0.939372389
|
6.70E+05
|
0.013958699
|
-5.27E+05
|
1490
|
143000
|
0.9457195
|
6.76E+05
|
0.013954874
|
-5.33E+05
|
1500
|
143000
|
0.952066611
|
6.82E+05
|
0.013951113
|
-5.39E+05
|