Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

A positive charge is kept (fixed) at the center inside a fixed spherical neutral conducting shell.

02/11/2020 Client: papadok01 Deadline: 7 Days

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 1/13

HW2 Due: 11:59pm on Monday, September 24, 2018

You will receive no credit for items you complete after the assignment is due. Grading Policy

Exercise 22.2

A flat sheet is in the shape of a rectangle with sides of lengths 0.400 and 0.600 . The sheet is immersed in a uniform electric field of magnitude 60.0 that is directed at 20 from the plane of the sheet .

Part A

Find the magnitude of the electric flux through the sheet.

Express your answer to two significant figures and include the appropriate units.

ANSWER:

Exercise 22.4

It was shown in Example 21.11 (Section 21.5) in the textbook that the electric field due to an infinite line of charge is perpendicular to the line and has magnitude . Consider an imaginary cylinder with a radius of = 0.130 and a length of = 0.430 that has an infinite line of positive charge running along its axis. The charge per unit length on the line is = 7.20 .

Part A

What is the electric flux through the cylinder due to this infinite line of charge?

ANSWER:

Part B

m m N/C ∘

= Φ

E = λ/2π rϵ0 r m l m λ

μC/m

= Φ /CN ⋅ m2

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 2/13

What is the flux through the cylinder if its radius is increased to 0.505 ?

ANSWER:

Part C

What is the flux through the cylinder if its length is increased to 0.810 ?

ANSWER:

Exercise 22.9

A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 18.0 , giving it a charge of -49.0 .

Part A

Find the electric field just inside the paint layer.

Express your answer with the appropriate units. Enter positive value if the field is directed away from the center of the sphere and negative value if the field is directed toward the center of the sphere.

ANSWER:

Part B

Find the electric field just outside the paint layer.

Express your answer with the appropriate units. Enter positive value if the field is directed away from the center of the sphere and negative value if the field is directed toward the center of the sphere.

ANSWER:

Part C

Find the electric field 5.00 outside the surface of the paint layer.

Express your answer with the appropriate units. Enter positive value if the field is directed away from the center of the sphere and negative value if the field is directed toward the center of the sphere.

ANSWER:

r = m

= Φ /CN ⋅ m2

l = m

= Φ /CN ⋅ m2

cm μC

= E

= E

cm

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 3/13

Instructors: View all hidden parts

Gauss's Law

Learning Goal:

To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable.

Gauss's law is usually written

where is the permittivity of vacuum.

Part A

How should the integral in Gauss's law be evaluated?

ANSWER:

Part B Complete previous part(s)

Exercise 22.12

The nuclei of large atoms, such as uranium, with protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately .

Part A

What is the electric field this nucleus produces just outside its surface?

Express your answer using two significant figures.

ANSWER:

Part B

What magnitude of electric field does it produce at the distance of the electrons, which is about 1.9×10−10 ?

Express your answer using two significant figures.

= E

= ∮ ⋅d = ,ΦE E⃗ A⃗ qencl ϵ0

= 8.85 × /(N ⋅ )ϵ0 10 −12 C2 m2

around the perimeter of a closed loop

over the surface bounded by a closed loop

over a closed surface

92 7.4 × m10−15

= E N/C

m

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 4/13

Instructors: View all hidden parts

ANSWER:

Part C

The electrons can be modeled as forming a uniform shell of negative charge. What net electric field do they produce at the location of the nucleus?

Express your answer using two significant figures.

ANSWER:

A Charged Sphere with a Cavity

An insulating sphere of radius , centered at the origin, has a uniform volume charge density .

Part A

Find the electric field inside the sphere (for < ) in terms of the position vector .

Express your answer in terms of , (Greek letter rho), and .

You did not open hints for this part.

ANSWER:

Part B Complete previous part(s)

± The Charge on a Thundercloud

In a thunderstorm, charge builds up on the water droplets or ice crystals in a cloud. Thus, the charge can be considered to be distributed uniformly throughout the cloud. For the purposes of this problem, take the cloud to be a sphere of diameter 1.00 kilometer. The point of this problem is to estimate the maximum amount of charge that this cloud can contain, assuming that the charge builds up until the electric field at the surface of the cloud reaches the value at which the surrounding air breaks down. This breakdown means that the air becomes highly ionized, enabling it to conduct the charge from the cloud to the ground or another nearby cloud. The ionized air will then emit light due to the recombination of the electrons and atoms to form excited molecules that radiate light. In addition, the large current will heat up the air, resulting in its rapid expansion. These two phenomena account for the appearance of lightning and the sound of thunder. Take the breakdown electric field of air to be

.

Part A

Estimate the total charge on the cloud when the breakdown of the surrounding air is reached.

= E N/C

= Enet N/C

a ρ

( )E ⃗ r ⃗ r a r ⃗

r ⃗ ρ ϵ0

= ( )E ⃗ r ⃗

= 3.00 × N/CEb 10 6

q

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 5/13

Express your answer numerically, to three significant figures, using .

You did not open hints for this part.

ANSWER:

Charge Distribution on a Conducting Shell - 2

A positive charge is kept (fixed) off-center inside a fixed spherical conducting shell that is electrically neutral, and the charges in the shell are allowed to reach electrostatic equilibrium.

Part A

The large positive charge inside the shell is roughly 16 times that of the smaller charges shown on the inner and outer surfaces of the spherical shell. Which of the following figures best represents the charge distribution on the inner and outer walls of the shell?

You did not open hints for this part.

ANSWER:

Charge Distribution on a Conducting Shell - 1

A positive charge is kept (fixed) at the center inside a fixed spherical neutral conducting shell.

= 8.85 × /(N ⋅ )ϵ0 10 −12 C2 m2

= Coulombs q

1

2

3

4

5

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 6/13

Part A

The positive charge is equal to roughly 16 of the smaller charges shown on the surfaces of the spherical shell. Which of the pictures best represents the charge distribution on the inner and outer walls of the shell?

You did not open hints for this part.

ANSWER:

Conceptual Question 22.01

Part A

If the electric flux through a closed surface is zero, the electric field at points on that surface must be zero.

ANSWER:

Conceptual Question 22.02

1

2

3

4

5

True

False

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 7/13

Part A

The figure shows four Gaussian surfaces surrounding a distribtuion of charges.

(a) Which Gaussian surfaces have an electric flux of through them?

ANSWER:

Part B

(b) Which Gaussian surfaces have no electric flux through them?

ANSWER:

Conceptual Question 22.04

Part A

Consider a spherical Gaussian surface of radius centered at the origin. A charge is placed inside the sphere. To maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located

ANSWER:

+q/ϵ0

b

c

d

a

a

c

b

d

R Q

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 8/13

Conceptual Question 22.09

Part A

An uncharged conductor has a hollow cavity inside of it. Within this cavity there is a charge of +10µC that does not touch the conductor. There are no other charges in the vicinity. Which statement about this conductor is true? (There may be more than one correct choice.)

ANSWER:

Conceptual Question 22.08

Part A

A charge is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length . At a point that is 1.25 cm outside the sheet, the magnitude of the electric field due to the sheet is . If the sheet is now

stretched so that its sides have length 2 , what is the magnitude of the electric field at ?

ANSWER:

at = 0, = /2, = 0.x y R z

at = /2, = 0, = 0.x R y z

at = 0, = 0, = /2.x y z R

at the origin.

The charge can be located anywhere, since flux does not depend on the position of the charge as long as it is inside the sphere.

The inner surface of the conductor carries a charge of -10µC and its outer surface carries no excess charge.

The inner and outer surfaces of the conductor each contain charges of -5µC.

The net electric field within the material of the conductor points away from the +10µC charge.

The outer surface of the conductor contains +10µC of charge and the inner surface contains -10µC.

Both surfaces of the conductor carry no excess charge because the conductor is uncharged.

Q d P E

d P

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 9/13

Prelecture Concept Question 22.06

Part A

Five point charges q and four Gaussian surfaces S are shown in the figure. What is the total electric flux through surface S2?

ANSWER:

4E

/2E

E

/4E

2E

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 10/13

Prelecture Concept Question 22.05

Part A

Five point charges q and four Gaussian surfaces S are represented in the figure shown. Through which of the Gaussian surfaces are the total electric flux zero?

Check all that apply.

ANSWER:

zero

3q/εo

5q/εo

q/εo

2q/εo

4q/εo

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 11/13

Problem 22.16

Part A

Electric charge is uniformly distributed inside a nonconducting sphere of radius 0.30 m. The electric field at a point , which is 0.50 m from the center of the sphere, is 15,000 N/C and is directed radially outward. What is the maximum magnitude of the electric field due to this sphere?

ANSWER:

Problem 22.23

Part A

A huge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. The upper face carries +95.0 nC/m2 while the lower face carries -25.0 nC/ m2. What is the magnitude of the electric field at a point within the sheet 2.00 cm below the upper face? ( = 8.85 × 10-12 C2/N · m2)

ANSWER:

S2

S3

S4

S1

The total electric flux is not zero through any of the Gaussian surfaces.

P

36,000 N/C

42,000 N/C

48,000 N/C

30,000 N/C

25,000 N/C

ε0

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 12/13

Problem 22.22

Part A

A very large sheet of a conductor carries a uniform charge density of 4.00 pC/mm2 on its surfaces. What is the electric field strength 3.00 mm outside the surface of the conductor? ( = 8.85 × 10-12 C2/N · m2)

ANSWER:

Problem 22.38

A long line carrying a uniform linear charge density runs parallel to and from the surface of a large, flat plastic sheet that has a uniform surface charge density of on one side.

Part A

Find the location of all points where an particle would feel no force due to this arrangement of charged objects.

ANSWER:

Part B

Choose an appropriate location of these points at a distance, calculated in part A.

0.00 N/C

1.36 × 104 N/C

7.91 × 103 N/C

3.95 × 103 N/C

6.78 × 103 N/C

ε0

9.04 × 105 N/C

4.52 × 105 N/C

2.26 × 105 N/C

0.226 N/C

0.452 N/C

+50.0μC/m 10.0 cm −100μC/m2

α

= from the line. L m

11/30/2018 HW2

https://session.masteringphysics.com/myct/assignmentPrintView?displayMode=studentView&assignmentID=6782961 13/13

ANSWER:

Score Summary: Your score on this assignment is 0.0%.

You received 0 out of a possible total of 20 points.

above the line

between the line and the sheet

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Essay Writing Help
Top Writing Guru
Online Assignment Help
Quality Homework Helper
Top Grade Essay
Buy Coursework Help
Writer Writer Name Offer Chat
Essay Writing Help

ONLINE

Essay Writing Help

I am a qualified and experienced Writer, Researcher, Tutor, analyst and Consultant. I hold MBA (Strategic Management) (Finance and Marketing) & CPA.K (Accounting and Finance.)

$62 Chat With Writer
Top Writing Guru

ONLINE

Top Writing Guru

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$60 Chat With Writer
Online Assignment Help

ONLINE

Online Assignment Help

Hi dear, I am ready to do your homework in a reasonable price.

$55 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

Hi dear, I am ready to do your homework in a reasonable price.

$62 Chat With Writer
Top Grade Essay

ONLINE

Top Grade Essay

Working on this platform from a couple of time with exposure of dynamic writing skills gathered with years experience on different other websites.

$62 Chat With Writer
Buy Coursework Help

ONLINE

Buy Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$62 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Human impact on ecosystems worksheet answer key - 8 ARCHEOLOGY QUESTIONS, respond in a few detailed sentenced to each - Grant and lee a study in contrasts answers - What makes water so special - Movie exhibition industry case analysis questions - Burns jm 1978 leadership new york harper & row - Tanglin club waiting list - Disney world's management of waiting lines - Define self reference criterion - IDM W 3 A - What's the square root of 54 - One canada square floors - Ingalls shipbuilding apprenticeship program - Main distribution board symbol - Paper writing - 1000 WORD MIN ESSAY DUE 10/17 THREE SCHOLARLY SOURCES - Introduction of history essay - Medical assistant code of ethics pdf - The arrival shaun tan chapter 3 summary - What is the role of technology in 21st century education - Bode plot open loop or closed loop - I need (1050 words) on Cognitive Behavioral Therapy (CBT) - Uk network of mindfulness teacher training organisations - Bonding in diamond and graphite - Financial management week 2 assignment Create a complete amortization schedule for the car, using the information above. - In n out burger uniform pants - Setting up a barometer - Don sabo pigskin patriarchy and pain - Ups store stones corner joplin mo - 700-W1,2,3,6,7 - Supplementary services in service marketing examples - Tutor - Ethan frome close reading worksheet answers - Individual differences in second language learning rod ellis - Viaguard dog dna test - 5 amp socket symbol - Rapid electronics christmas tree kit - What does a snake symbolize in literature - Lds young women handbook - Financial accounting chapter 8 solutions - Csu discussion - Performance rating in time study - Kbro3 s kbr s o2 g - Case Study - The unsettling of america chapter 1 summary - +91-8306951337 get your love back by vashikaran IN Erode - Health Care Delivery Models and Nursing Practice - The trees philip larkin - Connecting with practice eylf and nqs - Oxford brookes moodle login - Internal alignment meaning - We are only what we always were page number - The case of the pricing predicament - Under what conditions will the government approve a merger - Chapter 9 statistics answers - Journey through Nursing - COMM THEORY - GENDER DIFFERENCES/LISTENING SKILLS - Plenty ranges arts & convention centre vic 3752 - Tata nano the people's car case study - Ac circuits lab conclusion - Ps 2 model 80 - Module 1 short story - Inferential research and statistics project part 1 - Iso 9001 2015 risk based thinking - Leading Organizational Change & Cultural Transformation - Critical thinking steps university of phoenix - The following information is for sunny day real estate: - Capital budgeting mini case solution - Euclidean algorithm to find multiplicative inverse - Community health discussion - 10 plagues egyptian gods chart - Qnt 561 week 6 signature assignment consumer food - Timbuktu's river crossword answers - Periodicity puzzle worksheet answer - Sin2x in terms of tan - Kettle reboiler design procedure - How to write a log book - Hardcore pawn big bet over melted gold - Business Desertation - Given the ipv6 address 6a3e:ba91::877b:ffef/104, how many bits identify the host id? - Skip downing on course 8th edition pdf - Brc mesh a393 size - Nurses as knowledge workers - How to open scenario manager in excel - Front of house job description - Internal factors of samsung - Here are the cash flows for two mutually exclusive projects - Haccp plan for frozen chicken - W 7 - Health management - Blowing up wheelbarrow tire - Nutrition assignment - Fix it - Centre of pressure experiment - What were the two opposing opinions during the iconoclastic controversy - Stores material within the cell - Randomized Clinical Trial” (Nyamathi et al.,2015), - Gender identity development service - Please help me - Cisco nexus netflow support