Running head: NETWORK NEUTRALITY Chapter 10. Cloud Security Mechanisms 10.1 Encryption 10.2 Hashing 10.3 Digital Signature 10.4 Public Key Infrastructure (PKI) 10.5 Identity and Access Management (IAM) 10.6 Single Sign-On (SSO) 10.7 Cloud-Based Security Groups 10.8 Hardened Virtual Server Images This chapter establishes a set of fundamental cloud security mechanisms, several of which can be used to counter the security threats described in Chapter 6. 1 NETWORK NEUTRALITY 2 10.1. ENCRYPTION Data, by default, is coded in a readable format known as plaintext. When transmitted over a network, plaintext is vulnerable to unauthorized and potentially malicious access. The encryption mechanism is a digital coding system dedicated to preserving the confidentiality and integrity of data. It is used for encoding plaintext data into a protected and unreadable format. Encryption technology commonly relies on a standardized algorithm called a cipher to transform original plaintext data into encrypted data, referred to as ciphertext. Access to ciphertext does not divulge the original plaintext data, apart from some forms of metadata, such as message length and creation date. When encryption is applied to plaintext data, the data is paired with a string of characters called an encryption key, a secret message that is established by and shared among authorized parties. The encryption key is used to decrypt the ciphertext back into its original plaintext format. The encryption mechanism can help counter the traffic eavesdropping, malicious intermediary, insufficient authorization, and overlapping trust boundaries security threats. For example, malicious service agents that attempt traffic eavesdropping are unable to decrypt messages in transit if they do not have the encryption key (Figure 10.1). Figure 10.1. A malicious service agent is unable to retrieve data from an encrypted message. The retrieval attempt may furthermore be revealed to the cloud service consumer. (Note the use of the lock symbol to indicate that a security mechanism has been applied to the message contents.) NETWORK NEUTRALITY 3 There are two common forms of encryption known as symmetric encryption and asymmetric encryption. Symmetric Encryption Symmetric encryption uses the same key for both encryption and decryption, both of which are performed by authorized parties that use the one shared key. Also known as secret key cryptography, messages that are encrypted with a specific key can be decrypted by only that same key. Parties that rightfully decrypt the data are provided with evidence that the original encryption was performed by parties that rightfully possess the key.