Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Behavior analysts typically use analysis to interpret graphically displayed data

03/12/2021 Client: muhammad11 Deadline: 2 Day

Applied Behavioral Analysis 2

Resource: How to Make a Graph Using Microsoft Excel

The Unit 6 Assignment requires you to apply the theories, concepts, and research that you have covered so far this term to a hypothetical case study. Your answers to the questions and completed graph should consist of information from the text and supplemental readings.You also may use sources from the Kaplan library or other credible Internet sources, but your primary sources should be the readings assigned for the course.

Read each Case Study and answer the questions below. You will need to write 2–3 typed pages for each case in order to address all required parts of the project.Answers to the questions should be typed in an APA formatted Word document, double-spaced in 12-point font and submitted to the Dropbox.

Your final paper must be your original work; plagiarism will not be tolerated. Be sure to review the Syllabus in terms of what constitutes plagiarism.Please make sure to provide proper credit for those sources used in your case study analysis in proper APA format. Please see the APA Quick Reference for any questions related to APA citations. You must credit authors when you:

Summarize a concept, theory or research
Use direct quotes from the text or articles
Read Case Study 1: Martin

Martin, a behavior analyst, is working with Sara, a 14-year-old girl with severe developmental delays who exhibits self-injurious behavior (SIB). Sara’s target behavior is defined as pulling her hair, biting her arm and banging her head against the wall. After conducting a functional analysis, Martin decided to employ an intervention program consisting of differential reinforcement of other (DRO) desired behavior. Martin collected data on Sara's SIB before and during the intervention. Below is a depiction of the data that Martin collected:

Sara’s Frequency of SIB

BASELINE Occurrences DRO Occurrences
22 5
25 5
27 3
26 2

Address the following questions, and complete the following requirements:

Create a basic line graph using Microsoft Excel, to be included in your Word document. The graph should depict the data provided in this case study. You should only need to create one graph, with SIB depicted, both in baseline and in intervention.
What type of research design did Martin employ when working with Sara? What is an advantage and a disadvantage of using this research design?
According to the data in the graph, was the intervention that Martin selected effective in modifying Sara's self-injurious behavior?
Martin had considered using an ABAB reversal design when working with Sara. What are some ethical implications of selecting a reversal design when working with the type of behavior problems that Sara was exhibiting?
Martin's supervisor requested a graph of the data he collected when working with Sara. Why are graphs useful in evaluating behavior change?
Discuss how a graph demonstrates a functional relationship. Identify whether the graph that you created using the data provided in this section depicts a functional relationship.

In Part Two we described considerations and procedures for selecting and defin- ing target behaviors and discussed detailed methods for measuring behavior; we also examined techniques for improving, assessing, and reporting the veracity of measurement. The product of these measurements, called data, is the medium with which the behavior analyst works. But what does the behavior analyst do with the data? The five chapters in Part Three are devoted to the presentation and interpretation of behavioral data and to the design, conduct, and evaluation of ex- periments analyzing the effects of interventions.

In Chapter 6 we describe the graphic displays used by researchers, practi- tioners, and consumers to make sense of behavioral data. We discuss considera- tions for selecting, constructing, and interpreting the major types of graphs most often used by behavior analysts. Although measurement and graphic displays can reveal whether, when, and to what extent behavior has changed, they alone can- not reveal what brought about the behavior change. Chapters 7 through 10 are devoted to the analysis in applied behavior analysis. Chapter 7 describes the req- uisite components of any experiment in behavior analysis and explains how re- searchers and practitioners apply steady-state strategy and the three elements of basic logic—prediction, verification, and replication—-to seek and verify func- tional relations between behavior and its controlling variables. In Chapters 8 and 9 we describe the logic and operation of the reversal, alternating treatments, multiple baseline, and changing criterion designs—the most commonly used experimental designs in applied behavior analysis. Chapter 10 covers a wide range of topics necessary for developing a more complete understanding of be- havioral research. Beginning with the assumption that the research methods of any science should reflect the characteristics of its subject matter, we examine the importance of analyzing behavior at the level of individual client or research par- ticipant, discuss the value of flexibility in experimental design, identify some common confounds to the internal validity of experiments, present methods for assessing the social validity of an applied behavior analysis, and describe how replication is used to determine the external validity of research. We conclude Chapter 10 and Part Three with a series of issues and questions that should be considered in evaluating the “goodness” of a published study in applied behavior analysis.

P A R T 3

Evaluating and Analyzing Behavior Change

IS B

N 1

-2 56

-9 30

44 -X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

126

C H A P T E R 6

Constructing and Interpreting Graphic Displays of Behavioral Data

Key Terms

bar graph cumulative record cumulative recorder data data path dependent variable graph

independent variable level line graph local response rate overall response rate scatterplot semilogarithmic chart

split-middle line of progress Standard Celeration Chart trend variability visual analysis

Behavior Analyst Certification Board® BCBA® & BCABA® Behavior Analyst Task List ©, Third Edition

Content Area 7: Displaying and Interpreting Behavioral Data

7-1 Select a data display that effectively communicates quantitative relations.

7-2 Use equal-interval graphs.

7-3 Use Standard Celeration Charts (for BCBA only—excluded for BCABA).

7-4 Use a cumulative record to display data.

7-5 Use data displays that highlight patterns of behavior (e.g., scatterplot).

7-6 Interpret and base decision making on data displayed in various formats.

© 2006 The Behavior Analyst Certification Board, Inc.,® (BACB®) all rights reserved. A current version of this document may be found at www.bacb.com. Requests to reprint, copy, or distribute this document and ques- tions about this document must be submitted directly to the BACB.

IS B

N 1-256-93044-X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

Chapter 6 Constructing and Interpreting Graphic Displays of Behavioral Data 127

Applied behavior analysts document and quan- tify behavior change by direct and repeated measurement of behavior. The product of these

measurements, called data, is the medium with which behavior analysts work. In everyday usage the word data refers to a wide variety of often imprecise and subjec- tive information offered as facts. In scientific usage the word data means “the results of measurement, usually in quantified form” (Johnston & Pennypacker, 1993a, p. 365).1

Because behavior change is a dynamic and ongoing process, the behavior analyst—the practitioner and the researcher—must maintain direct and continuous con- tact with the behavior under investigation. The data ob- tained throughout a behavior change program or a research study are the means for that contact; they form the empirical basis for every important decision: to con- tinue with the present procedure, to try a different inter- vention, or to reinstitute a previous condition. But making valid and reliable decisions from the raw data themselves (a series of numbers) is difficult, if not impossible, and in- efficient. Inspecting a long row of numbers will reveal only very large changes in performance, or no change at all, and important features of behavior change can easily be overlooked.

Consider the three sets of data that follow; each con- sists of a series of numbers representing consecutive mea- sures of some target behavior. The first data set shows the results of successive measures of the number of responses emitted under two different conditions (A and B):

Condition A Condition B

120, 125, 115, 130, 114, 110, 115, 121,

126, 130, 123, 120, 110, 116, 107, 120,

120, 127 115, 112

Here are some data showing consecutive measures of the percentage of correct responses:

80, 82, 78, 85, 80, 90, 85, 85, 90, 92

The third data set consists of measures of responses per minute of a target behavior obtained on successive school days:

65, 72, 63, 60, 55, 68, 71, 65, 65, 62, 70, 75, 79, 63, 60

What do these numbers tell you? What conclusions can you draw from each data set? How long did it take you to reach your conclusions? How sure of them are you? What if the data sets contained many more mea- sures to interpret? How likely is it that others interested

1Although often used as a singular construction (e.g., “The data shows that . . .”), data is a plural noun of Latin origin and is correctly used with plural verbs (e.g., “These data are . . .”).

in the behavior change program or research study would reach the same conclusions? How could these data be di- rectly and effectively communicated to others?

Graphs—relatively simple formats for visually dis- playing relationships among and between a series of mea- surements and relevant variables—help people “make sense” of quantitative information. Graphs are the major device with which applied behavior analysts organize, store, interpret, and communicate the results of their work. Figure 6.1 includes a graph for each of the three data sets presented previously. The top graph reveals a lower level of responding during Condition B than during Condi- tion A. The middle graph clearly shows an upward trend

Trials

R es

p o

n se

s P

er M

in u

te F

re q

u en

cy

Observations

School Days

P er

ce n

t C

o rr

ec t

Figure 6.1 Graphic displays of three sets of hypothet- ical data illustrating changes in the level of responding across conditions (top), trend (middle), and cyclical variability (bottom).

IS B

N 1

-2 56

-9 30

44 -X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

128 Part 3 Evaluating and Analyzing Behavior Change

over time in the response measure. A variable pattern of responding, characterized by an increasing trend during the first part of each week and a decreasing trend toward the end of each week, is evident in the bottom graph. The graphs in Figure 6.1 illustrate three fundamental proper- ties of behavior change over time—level, trend, and vari- ability—each of which will be discussed in detail later in the chapter. The graphic display of behavioral data has proven an effective means of detecting, analyzing, and communicating these aspects of behavior change.

Purpose and Benefits of Graphic Displays of Behavioral Data Numerous authors have discussed the benefits of using graphs as the primary vehicle for interpreting and com- municating the results of behavioral treatments and re- search (e.g., Baer, 1977; Johnston & Pennypacker, 1993a; Michael, 1974; Parsonson, 2003; Parsonson & Baer, 1986, 1992; Sidman, 1960). Parsonson and Baer (1978) said it best:

In essence, the function of the graph is to communicate, in a readily assimilable and attractive manner, descrip- tions and summaries of data that enable rapid and accu- rate analysis of the facts. (p. 134)

There are at least six benefits of graphic display and visual analysis of behavioral data. First, plotting each measure of behavior on a graph right after the observa- tional period provides the practitioner or researcher with immediate access to an ongoing visual record of the par- ticipant’s behavior. Instead of waiting until the investi- gation or teaching program is completed, behavior change is evaluated continually, allowing treatment and experi- mental decisions to be responsive to the participant’s per- formance. Graphs provide the “close, continual contact with relevant outcome data” that can lead to “measurably superior instruction” (Bushell & Baer, 1994, p. 9).

Second, direct and continual contact with the data in a readily analyzable format enables the researcher as well as the practitioner to explore interesting variations in be- havior as they occur. Some of the most important research findings about behavior have been made because scien- tists followed the leads suggested by their data instead of following predetermined experimental plans (Sidman, 1960, 1994; Skinner, 1956).

Third, graphs, like statistical analyses of behavior change, are judgmental aids: devices that help the prac- titioner or experimenter interpret the results of a study or treatment (Michael, 1974). In contrast to the statistical tests of inference used in group comparison research, however, visual analysis of graphed data takes less time, is relatively easy to learn, imposes no predetermined or

2A comparison of the visual analysis of graphed data and inferences based on statistical tests of significance is presented in Chapter 10. 3Graphs, like statistics, can also be manipulated to make certain interpre- tations of the data more or less likely. Unlike statistics, however, most forms of graphic displays used in behavior analysis provide direct access to the original data, which allows the inquisitive or doubtful reader to re- graph (i.e., manipulate) the data.

arbitrary level for determining the significance of be- havior change, and does not require the data to conform to certain mathematical properties or statistical assump- tions to be analyzed.

Fourth, visual analysis is a conservative method for determining the significance of behavior change. A be- havior change deemed statistically significant according to a test of mathematical probabilities may not look very impressive when the data are plotted on a graph that re- veals the range, variability, trends, and overlaps in the data within and across experimental or treatment condi- tions. Interventions that produce only weak or unstable effects are not likely to be reported as important findings in applied behavior analysis. Rather, weak or unstable effects are likely to lead to further experimentation in an effort to discover controlling variables that produce mean- ingful behavior change in a reliable and sustained man- ner. This screening out of weak variables in favor of robust interventions has enabled applied behavior ana- lysts to develop a useful technology of behavior change (Baer, 1977).2

Fifth, graphs enable and encourage independent judgments and interpretations of the meaning and sig- nificance of behavior change. Instead of having to rely on conclusions based on statistical manipulations of the data or on an author’s interpretations, readers of published re- ports of applied behavior analysis can (and should) con- duct their own visual analysis of the data to form independent conclusions.3

Sixth, in addition to their primary purpose of dis- playing relationships between behavior change (or lack thereof) and variables manipulated by the practitioner or researcher, graphs can also be effective sources of feed- back to the people whose behavior they represent (e.g., DeVries, Burnettte, & Redmon, 1991; Stack & Milan, 1993). Graphing one’s own performance has also been demonstrated to be an effective intervention for a vari- ety of academic and behavior change objectives (e.g., Fink & Carnine, 1975; Winette, Neale, & Grier, 1979).

Types of Graphs Used in Applied Behavior Analysis Visual formats for the graphic display of data most often used in applied behavior analysis are line graphs, bar graphs, cumulative records, semilogarithmic charts, and scatterplots.

IS B

N 1-256-93044-X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

Chapter 6 Constructing and Interpreting Graphic Displays of Behavioral Data 129

Line Graphs

The simple line graph, or frequency polygon, is the most common graphic format for displaying data in applied behavior analysis. The line graph is based on a Cartesian plane, a two-dimensional area formed by the intersection of two perpendicular lines. Any point within the plane represents a specific relationship between the two di- mensions described by the intersecting lines. In applied behavior analysis, each point on a line graph shows the level of some quantifiable dimension of the target be- havior (i.e., the dependent variable) in relation to a spec- ified point in time and/or environmental condition (i.e., the independent variable) in effect when the measure was taken. Comparing points on the graph reveals the presence and extent of changes in level, trend, and/or variability within and across conditions.

Parts of a Basic Line Graph

Although graphs vary considerably in their final appear- ance, all properly constructed line graphs share certain elements. The basic parts of a simple line graph are shown in Figure 6.2 and described in the following sections.

1. Horizontal Axis. The horizontal axis, also called the x axis, or abscissa, is a straight horizontal line that most often represents the passage of time and the pres- ence, absence, and/or value of the independent variable. A defining characteristic of applied behavior analysis is the repeated measurement of behavior across time. Time is also the unavoidable dimension in which all manipulations of the independent variable occur. On

most line graphs the passage of time is marked in equal intervals on the horizontal axis. In Figure 6.2 succes- sive 10-minute sessions during which the number of property destruction responses (including attempts) was measured are marked on the horizontal axis. In this study, 8 to 10 sessions were conducted per day (Fisher, Lindauer, Alterson, & Thompson, 1998).

The horizontal axis on some graphs represents dif- ferent values of the independent variable instead of time. For example, Lalli, Mace, Livezey, and Kates (1998) scaled the horizontal axis on one graph in their study from less than 0.5 meters to 9.0 meters to show how the occurrence of self-injurious behavior by a girl with severe mental retardation decreased as the distance between the therapist and the girl increased.

2. Vertical Axis. The vertical axis, also called the y axis, or ordinate, is a vertical line drawn upward from the left-hand end of the horizontal axis. The vertical axis most often represents a range of values of the dependent variable, which in applied behavior analysis is always some quantifiable dimension of behavior. The intersec- tion of the horizontal and vertical axes is called the origin and usually, though not necessarily, represents the zero value of the dependent variable. Each succes- sive point upward on the vertical axis represents a greater value of the dependent variable. The most com- mon practice is to mark the vertical axis with an equal- interval scale. On an equal-interval vertical axis equal distances on the axis represent equal amounts of behav- ior. The vertical axis in Figure 6.2 represents the number of property destruction responses (and attempts) per minute with a range of 0 to 4 responses per minute.

4

3

2

1

0

P ro

p er

ty D

es tr

u ct

io n

an d

A tt

em p

te d

P ro

p er

ty D

es tr

u ct

io n

p er

M in

u te

5 10 15 20 25 30

Milo

3

6 5

Baseline Blocking Baseline Blocking Baseline Blocking

4

7

1

2

Sessions

Rates of property destruction (plus attempts) during baseline and the blocking condition for Milo.

Figure 6.2 The major parts of a simple line graph: (1) horizontal axis, (2) vertical axis, (3) condition change lines, (4) condi- tion labels, (5) data points, (6) data path, and (7) figure caption.

From “Assessment and Treatment of Destructive Behavior Maintained by Stereotypic Object Manipulation” by W. W. Fisher, S. E. Lindauer, C. J. Alterson, and R. H. Thompson, 1998, Journal of Applied Behavior Analysis, 31, p. 522. Copyright 1998 by the Society for the Experimental Analysis of Behavior, Inc. Used by permission.

IS B

N 1

-2 56

-9 30

44 -X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

130 Part 3 Evaluating and Analyzing Behavior Change

3. Condition Change Lines. Condition change lines are vertical lines drawn upward from the horizontal axis to show points in time at which changes in the in- dependent variable occurred. The condition change lines in Figure 6.2 coincide with the introduction or withdrawal of an intervention the researchers called blocking. Condition change lines can be drawn as solid or dashed lines. When relatively minor changes occur within an overall condition, dashed vertical lines should be used to distinguish minor changes from major changes in conditions, which are shown by solid lines (see Figure 6.18).

4. Condition Labels. Condition labels, in the form of single words or brief descriptive phrases, are printed along the top of the graph and parallel to the horizontal axis. These labels identify the experimental conditions (i.e., the presence, absence, or some value of the inde- pendent variable) that are in effect during each phase of the study.4

5. Data Points. Each data point on a graph repre- sents two facts: (a) a quantifiable measure of the target behavior recorded during a given observation period and (b) the time and/or experimental conditions under which that particular measurement was conducted. Using two data points from Figure 6.2 as examples, we can see that during Session 5, the last session of the first baseline phase, property destruction and attempted property destruction responses occurred at a rate of ap- proximately 2 responses per minute; and in Session 9, the fourth session of the first blocking phase, 0 in- stances of the target behavior were recorded.

6. Data Path. Connecting successive data points within a given condition with a straight line creates a data path. The data path represents the level and trend of behavior between successive data points, and it is a primary focus of attention in the interpretation and analysis of graphed data. Because behavior is rarely observed and recorded continuously in applied behav- ior analysis, the data path represents an estimate of the actual course taken by the behavior during the time elapsed between the two measures. The more mea- surements and resultant data points per unit of time (given an accurate observation and recording system),

4The terms condition and phase are related but not synonymous. Properly used, condition indicates the environmental arrangements in effect at any given time; phase refers to a period of time within a study or behavior- change program. For example, the study shown in Figure 6.2 consisted of two conditions (baseline and blocking) and six phases.

the more confidence one can place in the story told by the data path.

7. Figure Caption. The figure caption is a concise statement that, in combination with the axis and condi- tion labels, provides the reader with sufficient informa- tion to identify the independent and dependent variables. The figure caption should explain any symbols or ob- served but unplanned events that may have affected the dependent variable (see Figure 6.6) and point out and clarify any potentially confusing features of the graph (see Figure 6.7).

Variations of the Simple Line Graph: Multiple Data Paths

The line graph is a remarkably versatile vehicle for dis- playing behavior change. Whereas Figure 6.2 is an ex- ample of the line graph in its simplest form (one data path showing a series of successive measures of behav- ior across time and experimental conditions) by the ad- dition of multiple data paths, the line graph can display more complex behavior–environment relations. Graphs with multiple data paths are used frequently in applied behavior analysis to show (a) two or more dimensions of the same behavior, (b) two or more different behaviors, (c) the same behavior under different and alternating ex- perimental conditions, (d) changes in target behavior rel- ative to the changing values of an independent variable, and (e) the behavior of two or more participants.

Two or More Dimensions of the Same Behavior. Showing multiple dimensions of the dependent variable on the same graph enables visual analysis of the ab- solute and relative effects of the independent variable on those dimensions. Figure 6.3 shows the results of a study of the effects of training three members of a women’s college basketball team proper foul shooting form (Kladopoulos & McComas, 2001). The data path created by connecting the open triangle data points shows changes in the percentage of foul shots executed with the proper form, whereas the data path connecting the solid data points reveals the percentage of foul shots made. Had the experimenters recorded and graphed only the players’ foul shooting form, they would not have known whether any improvements in the target behavior on which training was focused (correct foul shooting form) coincided with improvements in the be- havior by which the social significance of the study would ultimately be judged—foul shooting accuracy. By measuring and plotting both form and outcome on the same graph, the experimenters were able to analyze the effects of their treatment procedures on two critical dimensions of the dependent variable.

IS B

N 1-256-93044-X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

Chapter 6 Constructing and Interpreting Graphic Displays of Behavioral Data 131

100

80

60

40

20

0

100

80

60

40

20

0

Baseline Form Training

Participant 1 foul shot data form data

100

80

60

40

20

0

100

80

60

40

20

0 Participant 2

100

80

60

40

20

0

100

80

60

40

20

0 Participant 3

Sessions 5 1510 2520

P er

ce n

ta ge

o f

Sh o

ts M

ad e

P er

ce n

ta ge

o f

C o

rr ec

t T

ri al

s Figure 1. Percentage of shots made (filled circles) and percentage of shots taken with correct form (open triangles) across sessions for each participant.

Figure 6.3 Graph using multiple data paths to show the effects of the independent variable (Form Training) on two dimensions (accuracy and topography) of the target behavior.

From “The Effects of Form Training on Foul- Shooting Performance in Members of a Women’s College Basketball Team” by C. N. Kladopoulos and J. J. McComas, 2001, Journal of Applied Behavior Analysis, 34, p. 331. Copyright 2001 by the Society for the Experimental Analysis of Behavior, Inc. Used by permission.

Two or More Different Behaviors. Multiple data paths are also used to facilitate the simultaneous com- parison of the effects of experimental manipulations on two or more different behaviors. Determining the co- variation of two behaviors as a function of changes in the independent variable is accomplished more easily if both can be displayed on the same set of axes. Figure 6.4 shows the percentage of intervals in which a boy with autism exhibited stereotypy (e.g., repetitive body movements, rocking) across three conditions and the number of times that he raised his hand for attention (in the attention condition), signed for a break (in the de- mand condition), and signed for access to preferred tan- gible stimuli (in the no-attention condition) in a study investigating a strategy called functional communica- tion training (Kennedy, Meyer, Knowles, & Shukla, 2000).5 By recording and graphing both stereotypic re- sponding and appropriate behavior, the investigators were able to determine whether increases in alternative communication responses (raising his hand and sign- ing) were accompanied by reductions in stereotypy. Note that a second vertical axis is used on Figure 6.4 to

5Functional communication training is described in Chapter 23.

show the proper dimensional units and scaling for sign- ing frequency. Because of the differences in scale, read- ers of dual-vertical axis graphs must view them with care, particularly when assessing the magnitude of be- havior change.

Measures of the Same Behavior under Different Conditions. Multiple data paths are also used to repre- sent measures of the same behavior taken under differ- ent experimental conditions that alternate throughout an experimental phase. Figure 6.5 shows the number of self-injurious response per minute by a 6-year-old girl with developmental disabilities under four different conditions (Moore, Mueller, Dubard, Roberts, & Sterling- Turner, 2002). Graphing an individual’s behavior under multiple conditions on the same set of axes allows di- rect visual comparisons of differences in absolute levels of responding at any given time as well as relative changes in performance over time.

Changing Values of an Independent Variable. Multiple data path graphs are also used to show changes in the target behavior (shown on one data path) relative to changing values of the independent variable (repre- sented by a second data path). In each of the two graphs

IS B

N 1

-2 56

-9 30

44 -X

Applied Behavior Analysis, Second Edition, by John O. Cooper, Timothy E. Heron, and William L. Heward. Published by Merrill Prentice Hall. Copyright © 2007 by Pearson Education, Inc.

132 Part 3 Evaluating and Analyzing Behavior Change

100

80

60

40

20

0

30

20

10

0

Attention

100

80

60

40

20

0

Demand

Signing

Stereotypy

30

20

10

0

P er

ce n

ta ge

o f

In te

rv al

s o

f St

er eo

ty p

y

100

80

60

40

20

0

No Attention 30

20

10

0 5 10 15 20 25 30 35

BL Functional Communication Training

Sessions

Si gn

in g

F re

q u

en cy

Figure 2. Occurrence of stereotypy for James across attention, demand, and no-attention conditions. Data are arrayed as the percentage of intervals of stereotypy on the left y axis and number of signs per sessions on the right y axis.

Figure 6.4 Graph with multiple data paths showing two different behaviors by one participant during baseline and training across three different conditions. Note the different dimensions and scaling of the dual vertical axes.

From “Analyzing the Multiple Functions of Stereotypical Behavior for Students with Autism: Implications for Assessment and Treatment” by C. H. Kennedy, K. A. Meyer, T. Knowles, and S. Shukla, 2000, Journal of Applied Behavior Analysis, 33, p. 565. Copyright 2000 by the Society for the Experimental Analysis of Behavior, Inc. Used by permission.

in Figure 6.6 one data path shows the duration of prob- lem behavior (plotted against the left-hand y axis scaled in seconds) relative to changes in noise level, which are depicted by the second data path (plotted against the right-hand y axis scaled in decibels) (McCord, Iwata, Galensky, Ellingson, & Thomson, 2001).

The Same Behavior of Two or More Participants. Multiple data paths are sometimes used to show the be- havior of two or more participants on the same graph.

Depending on the levels and variability of the data encompassed by each data path, a maximum of four dif- ferent data paths can be displayed effectively on one set of axes. However, there is no rule; Didden, Prinsen, and Sigafoos displayed five data paths in a single display (2000, p. 319). If too many data paths are displayed on the same graph, the benefits of making additional compar- isons may be outweighed by the distraction of too much visual “noise.” When more than four data paths must be

6A superb example of combining visual display techniques is Charles Mi- nard’s use of space-time-story graphics to illustrate the interrelations of six variables during Napoleon’s ill-fated Russian campaign of 1812–1813 (see Tufte, 1983, p. 41). Tufte called Minard’s graph perhaps “the best sta- tistical graphic ever drawn” (p. 40).

included on the same graph, other methods of display can be incorporated.6 For example, Gutowski and Stromer (2003) effectively used striped and shaded bars in com- bination with conventional data paths to display the num- ber of names spoken and the percentage of correct matching-to-sample responses by individuals with men- tal retardation (see Figure 6.7).

Bar Graphs

The bar graph, or histogram, is a simple and versatile format for graphically summarizing behavioral data. Like the line graph, the bar graph is based on the Cartesian

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Professional Accountant
Smart Tutor
Finance Professor
University Coursework Help
Homework Tutor
Math Guru
Writer Writer Name Offer Chat
Professional Accountant

ONLINE

Professional Accountant

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$45 Chat With Writer
Smart Tutor

ONLINE

Smart Tutor

After reading your project details, I feel myself as the best option for you to fulfill this project with 100 percent perfection.

$16 Chat With Writer
Finance Professor

ONLINE

Finance Professor

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$26 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$38 Chat With Writer
Homework Tutor

ONLINE

Homework Tutor

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$18 Chat With Writer
Math Guru

ONLINE

Math Guru

As per my knowledge I can assist you in writing a perfect Planning, Marketing Research, Business Pitches, Business Proposals, Business Feasibility Reports and Content within your given deadline and budget.

$28 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Demographics - Dedra whitt camille grammer wedding - Help- Develop a Computer/Internet Security Policy - My manisku pte ltd - Shadow health focused exam chest pain quizlet - How did the renaissance change history - Drac and the gremlin teaching notes - How to calculate cp cpk in excel - Earl spencer's speech at princess diana's funeral - The widest intervertebral discs are found in the ________ region - Psychology - COMM THEORY - ATTRIBUTION THEORY/CRISIS/COVID - How to cite sentinel city in apa format - Nc public health nursing - Transformer neutral earthing standards - Designing Qualitative Research 8110 - Therapeutic Relationships - Mabel park high school uniform shop - Democrats discussion cjt101 - Urgent!!! - Cystic fibrosis punnett square - Discussion - Discussion: When the People You Love Don’t Think Like You - Real time business intelligence at continental airlines - Main range walk charlottes pass - How to hack a firewall - +91-8306951337 vashikaran specialist near me IN Hubballi-Dharwad - 4 pages needed - Math Questions - Total rewards communication plan template - How do you find the heat capacity of a calorimeter - Tesu semester dates - 4 wire stepper motor sequence - Fasting Blood Sugar Values - Stealing carol ann duffy - Dulux white duck half exterior - Mcgraw hill practice operations module 1 answers - My perspectives a quilt of a country answers - DISCUSSION - Econ 213 quiz 1 - University of reading security - Taxonomy lab to show organism relationships - Brisbane city council code assessment - Fingame 5.0 - Cinema audiences blink at the same time - Forecasting interview questions - Research strategies badke 5th edition pdf - International human resource management exam questions - Com 201 - Nursing - The four (4) schools of criminology - Queen of the night cactus - Niosh lifting equation excel - Sugar is a major ingredient in many breakfast cereals - Electron configuration quiz answer key - 50-W2,3,4,5,6,7 - Bocam park pencoed jobs - Discuss Question - Teacher aide requirements qld - Al zahra funeral services - Draw enantiomer of the compound shown below - Bus6 - Legal environment - New deal relief poster - R v loveridge [2013] nswsc 1638 - Discussion Question - Jingle bells jingle bells santa's coming - Mgmt_Economics - Reflection, Discussion and Research Paper - How are electrical wires different from your nerves - Cuda c++ Blur - Labor Law Reform - (6.63e-34)*(4.6e14) - Madras banyan tree derrimut - Importance of collecting data for intake and assessment forms - Grace faces three problems - Dan gartrell theory and methods - The art of metacommentary they say i say - The duties of man mazzini summary - Allusion in i have a dream speech - 39 koorong st the gap - What were the destination ip addresses discovered by the netwitness investigator analysis? - Who is eurynome in the odyssey - The term receivables refers to - The margin of safety is the excess of - How to use a shepherd's whistle - APA-Paper-Public Health Policies-Nursing - Ettinger avocado tree for sale - Four seasons hotel financial statements - Legislation Comparison Grid and Testimony/Advocacy Statement - What basic arithmetical and logical functions are used in sha - Medical surgical skills checklist - Ska brewing pinstripe red ale - Why be happy when you could be normal litcharts - Battletech unit color compendium - Tax prep 1 tax course 101 final - Crime - Technical Acceptance Model & Leadership - Choate prep school pronunciation - Ata paint technician online test - Concept development practice page 29-1