Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Bge peak rewards thermostat blank

20/11/2021 Client: muhammad11 Deadline: 2 Day

Residential Solar Energy Demand In Poland

CAROL A. DAHL

2ND EDITION

UNDERSTANDING PRICING, POLICIES, AND PROFITS

INTERNATIONAL ENERGY MARKETS

Disclaimer The recommendations, advice, descriptions, and the methods in this book are presented solely for educational purposes. The author and publisher assume no liability whatsoever for any loss or damage that results from the use of any of the material in this book. Use of the material in this book is solely at the risk of the user.

Copyright© 2015 by PennWell Corporation 1421 South Sheridan Road Tulsa, Oklahoma 74112-6600 USA

800.752.9764 +1.918.831.9421 sales@pennwell.com www.pennwellbooks.com www.pennwell.com

Marketing Manager: Sarah De Vos National Account Executive: Barbara McGee

Director: Mary McGee Managing Editor: Stephen Hill Production Manager: Sheila Brock Production Editor: Tony Quinn Book Designer: Susan E. Ormston Cover Designer: Elizabeth Wollmershauser

Library of Congress Cataloging-in-Publication Data

Dahl, Carol A. (Carol Ann), 1947- International energy markets : understanding pricing, policies, and profits / Carol A. Dahl. -- 2nd edition. pages cm

Includes bibliographical references and index. ISBN 978-1-59370-291-5 1. Energy industries. 2. International economic relations. I. Title. HD9502.A2D335 2014 333.79--dc23 2014029321

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of the publisher.

Printed in the United States of America

1 2 3 4 5 19 18 17 16 15

With love to Jim for his patience, forbearance, and unfailing love and support.

Figures Fig. 2–1. Conventional and unconventional natural gas reserves by major

country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Fig. 2–2. World primary energy substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Fig. 2–3. Successive median forecasts by International Energy Workshop

polls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Fig. 3–1. World historical coal production by major country. . . . . . . . . . . . . . . . . . 44 Fig. 3–2. Percent of world coal production by major producer in 2013 . . . . . . . . . 45 Fig. 3–3. US historical coal prices adjusted for inflation . . . . . . . . . . . . . . . . . . . . . . 46 Fig. 3–4. Supply and demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Fig. 3–5. Increase in demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Fig. 3–6. Decrease in supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Fig. 3–7. Representative business cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Fig. 3–8. Global gross national product with selected countries, 1913–2012 . . . . 65 Fig. 4–1. Consumer plus producer surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Fig. 4–2. Supply equals marginal cost in a competitive market . . . . . . . . . . . . . . . . 73 Fig. 4–3. Government price controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Fig. 4–4. A maximum price in a competitive market . . . . . . . . . . . . . . . . . . . . . . . . . 77 Fig. 4–5. Government share per barrel of oil, 1998–2007 . . . . . . . . . . . . . . . . . . . . . 83 Fig. 4–6. Supply and demand in an energy market . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Fig. 4–7. Supply and demand with a unit tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Fig. 4–8. Supply and demand with tax on the consumer . . . . . . . . . . . . . . . . . . . . . . 88 Fig. 4–9. Incidence of a unit tax under different demand elasticities . . . . . . . . . . . 89 Fig. 4–10. Deadweight loss from an energy tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Fig. 5–1. US and world electricity consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Fig. 5–2. Electricity energy balance in the United States, 2013. . . . . . . . . . . . . . . . . 95 Fig. 5–3. Electricity consumption and population by major world regions,

2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Fig. 5–4. World (a) and US (b) electricity production by fuel type, 2011 . . . . . . . . 97 Fig. 5–5. Various cost structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Fig. 5–6. Typical daily electric load curves for Israel, Jordan, and Egypt . . . . . . . 104 Fig. 5–7. US and Canadian electricity end use by month. . . . . . . . . . . . . . . . . . . . . 105 Fig. 5–8. Inverse demand and cost curves in a decreasing cost industry . . . . . . . 107 Fig. 5–9. Monopoly production, price, and profit . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Fig. 5–10. Peak load model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Fig. 6–1. Double-sided bidding market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xxi

xxii International Energy Markets

Fig. 6–2. Peak load demand and supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Fig. 6–3. Electricity restructuring in the US electricity sector, 2010 . . . . . . . . . . . 148 Fig. 7–1. Social welfare in a competitive market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Fig. 7–2. Monopoly producer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Fig. 7–3. Numerical examples of monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Fig. 7–4. Competitive supply in a constant cost industry . . . . . . . . . . . . . . . . . . . . 159 Fig. 7–5. Social losses from monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Fig. 7–6. Monopoly and price controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Fig. 7–7. Real US oil prices to refineries, 1861–2014 and March 2015

(in 2014$) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Fig. 7–8. OPEC’s share of world crude oil production 1960–2012 . . . . . . . . . . . . 167 Fig. 7–9. OPEC monthly production and quotas, 1982–2012 . . . . . . . . . . . . . . . . 168 Fig. 7–10. Monthly nominal prices, three marker crudes,

January 1988–April 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Fig. 7–11. Marginal cost for a two-country OPEC . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Fig. 7–12. Dominant firm numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Fig. 7–13. Developing demand for OPEC’s oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Fig. 7–14. Dominant firm model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Fig. 7–15. Dominant firm numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Fig. 7–16. Marginal social efficiency of investment . . . . . . . . . . . . . . . . . . . . . . . . . 180 Fig. 7–17. Target revenues and price increases for high (a) and low

(b) absorber country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Fig. 7–18. Target revenue and price increase for high-absorber countries . . . . . 182 Fig. 8–1. Natural gas world consumption and production by major region,

2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Fig. 8–2. Global natural gas use by sector, 1971–2011 . . . . . . . . . . . . . . . . . . . . . . . 191 Fig. 8–3. Historical natural gas consumption in the United States by major

sector, 1930–2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Fig. 8–4. Monthly US natural gas consumption and Henry Hub spot prices . . . 205 Fig. 8–5. Price and quantity changes under fixed price and fixed quantity

regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Fig. 8–6. Historical natural gas price at the wellhead, 1922–2012 . . . . . . . . . . . . . 207 Fig. 8–7. Real US natural gas prices by sector, 1967–2013 . . . . . . . . . . . . . . . . . . . 210 Fig. 8–8. Natural gas net withdrawals (withdrawals [+] minus additions [–])

to storage and spot price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Fig. 8–9. Major North American natural gas hubs and market flows, 2009 . . . . 212 Fig. 9–1. Monopsony purchases of LNG for constant marginal product up

to generating capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Figures xxiii

Fig. 9–2. Monopsony purchases of LNG with downward sloping MRPL . . . . . . . 228 Fig. 9–3. Perfectly price-discriminating monopsonist . . . . . . . . . . . . . . . . . . . . . . . 230 Fig. 9–4. OLEC as monopoly seller of LNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Fig. 9–5. Bilateral monopoly in the Asia-Pacific LNG market . . . . . . . . . . . . . . . . 232 Fig. 9–6. Reservation prices in a bilateral monopoly. . . . . . . . . . . . . . . . . . . . . . . . . 233 Fig. 10–1. Coal and oil consumption and production, 1950–2012 (bcm) . . . . . . 241 Fig. 10–2. Energy consumption and production for natural gas and primary

electricity in Eastern Europe, Western Europe, and the former Soviet Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Fig. 10–3. Regional non-hydro electricity generation by source, 2011 . . . . . . . . . 258 Fig. 10–4. Reaction functions for a duopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Fig. 10–5. Competitive market with two suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Fig. 10–6. Two gas producers acting as a monopolist. . . . . . . . . . . . . . . . . . . . . . . . 269 Fig. 10–7. Limit pricing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Fig. 11–1. Supply and demand in a market with negative externalities . . . . . . . . 278 Fig. 11–2. Costs and benefits of pollution emissions into water . . . . . . . . . . . . . . 279 Fig. 11–3. Varying marginal costs by area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Fig. 11–4. Marginal abatement costs for two firms. . . . . . . . . . . . . . . . . . . . . . . . . . 285 Fig. 11–5. SO2 emissions for 249 regulated generating units, 1985 and 2000 . . . 287 Fig. 12–1. Coastal and inland demand for CO2 abatement . . . . . . . . . . . . . . . . . . . 293 Fig. 12–2. Social optimum for CO2 abatement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Fig. 12–3. Social losses for private market production of public goods . . . . . . . . 294 Fig. 12–4. Social optimum for a public good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Fig. 12–5. Permits issued under different abatement cost scenarios. . . . . . . . . . . 308 Fig. 13–1. Significant oil disruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Fig. 13–2. Oil and product world chokepoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Fig. 13–3. Share of global electricity consumption by fuel . . . . . . . . . . . . . . . . . . . 324 Fig. 13–4. OPEC spare capacity in millions of barrels a day . . . . . . . . . . . . . . . . . . 325 Fig. 13–5. Petroleum stocks in IEA countries (millions of barrels) . . . . . . . . . . . . 326 Fig. 13–6. IEA countries’ investment in energy efficiency. . . . . . . . . . . . . . . . . . . . 327 Fig. 13–7. Optimal spending on safety precaution (X*) . . . . . . . . . . . . . . . . . . . . . . 329 Fig. 13–8. Nuclear power with (S) and without (S') government support,

case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Fig. 13–9. Nuclear power with (S) and without (S') government support,

case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Fig. 13–10. Optimal nuclear safety precaution with and without the

Price-Anderson Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Fig. 14–1. Reserves/production ratios for the United States. . . . . . . . . . . . . . . . . . 338

xxiv International Energy Markets

Fig. 14–2. Demand in the current period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Fig. 14–3. Demand for oil now and in the next period. . . . . . . . . . . . . . . . . . . . . . . 342 Fig. 14–4. Optimal allocation of a resource in a two-period model . . . . . . . . . . . 343 Fig. 14–5. Consumer surplus in a two-period model . . . . . . . . . . . . . . . . . . . . . . . . 345 Fig. 14–6. Dynamic competitive solution maximizes NPV of social welfare . . . 345 Fig. 14–7. Change in resource allocation over time with income growth . . . . . . 346 Fig. 14–8. Change in resource allocation over time with lower interest

rate (r') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Fig. 14–9. Two-sector model with reserves of 500 . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Fig. 14–10. Allocation in a two-period dynamic model with constant

marginal cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Fig. 14–11. Two-period model with a backstop fuel of $70 . . . . . . . . . . . . . . . . . . 353 Fig. 14–12. A monopoly producer in a two-period model . . . . . . . . . . . . . . . . . . . 356 Fig. 15–1. Gross world primary energy consumption . . . . . . . . . . . . . . . . . . . . . . . 369 Fig. 15–2. Hydroelectric power from a dam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 Fig. 15–3. Geothermal power plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Fig. 15–4. Hubbert curve for oil and gas reserves . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Fig. 16–1. World energy use by industry, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Fig. 16–2. World energy consumption by type of transportation, 2010 . . . . . . . . 407 Fig. 16–3. Total US residential energy use by service, 2012. . . . . . . . . . . . . . . . . . . 407 Fig. 16–4. US commercial energy use by service, 2012 . . . . . . . . . . . . . . . . . . . . . . 408 Fig. 16–5. Budget constraint: N = Y/PN – (PE /PN)E for Y = 160 and Y = 320 . . . . 419 Fig. 16–6. Budget constraint when only energy price doubles . . . . . . . . . . . . . . . . 420 Fig. 16–7. Indifference curve representing the consumer’s preferences. . . . . . . . 421 Fig. 16–8. Highest utility on the budget constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 422 Fig. 16–9. Consumption changes with changing energy price . . . . . . . . . . . . . . . . 424 Fig. 16–10. Tracing out a consumer’s expansion path and Engel curves . . . . . . . 425 Fig. 16–11. Comparing a subsidy with an equal cost cash payment . . . . . . . . . . . 426 Fig. 16–12. Marginal revenue product for a producer . . . . . . . . . . . . . . . . . . . . . . . 428 Fig. 17–1. Consumption and production of oil products by world region,

2010 (1,000 bbl/d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Fig. 17–2. Oklahoma sweet distillation curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Fig. 17–3. Isoquants for the Leontief production function

X1 = 2.5 min(u1, u2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Fig. 17–4. Diagram for gasoline blending problem . . . . . . . . . . . . . . . . . . . . . . . . . . 448 Fig. 17–5. Transport of fossil fuels worldwide in 2011 . . . . . . . . . . . . . . . . . . . . . . . 456 Fig. 17–6. Illustrative gas and oil transportation costs, 2011 . . . . . . . . . . . . . . . . . 460

Figures xxv

Fig. 18–1. Daily WTI crude oil and Henry Hub natural gas prices . . . . . . . . . . . . 467 Fig. 18–2. Future prices today (t = 0) by maturity date. . . . . . . . . . . . . . . . . . . . . . . 477 Fig. 18–3. One- and four-month future contract prices. . . . . . . . . . . . . . . . . . . . . . 478 Fig. 18–4. Three-month convenience yield for US light sweet crude oil,

January 1986 to June 24, 2014, and US stocks of crude oil . . . . . . . . . . . . . . . . . . 480 Fig. 18–5. How higher futures prices might influence the spot market . . . . . . . . 485 Fig. 18–6. Petroleum stocks by month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 Fig. 18–7. Real WTI price and OPEC crude capacity, production, and spare

capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 Fig. 19–1. Payoff of European long call at expiration . . . . . . . . . . . . . . . . . . . . . . . . 494 Fig. 19–2. Payoff of European long put at expiration . . . . . . . . . . . . . . . . . . . . . . . . 495 Fig. 19–3. Valuing a call from an underlying asset . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Fig. 19–4. Value of one-half of an asset (a) and a bond (b) in one period. . . . . . . 497 Fig. 19–5. Value of an underlying asset in a binomial lattice. . . . . . . . . . . . . . . . . . 500 Fig. 19–6. Value of a put option in a binomial lattice . . . . . . . . . . . . . . . . . . . . . . . . 500 Fig. 19–7. Lattice with the underlying asset value (Si), put value (Pi), and

probability at each node (pi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 Fig. 19–8. Net value of a European long straddle at expiration . . . . . . . . . . . . . . . 506 Fig. 20–1. Energy ladder for household energy use. . . . . . . . . . . . . . . . . . . . . . . . . . 512 Fig. 20–2. World consumption of energy by source, 1850–2013 . . . . . . . . . . . . . . 512 Fig. 20–3. Sample Lorenz curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Fig. 20–4. Gini coefficient equals A/(A + B ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Fig. 20–5. Allocating labor on private (LPv) and common property (LC). . . . . . . . 528 Fig. 20–6. Effect on society’s welfare in two examples of the commons. . . . . . . . 529 Fig. 20–7. Volume of biomass from a long-growing tree . . . . . . . . . . . . . . . . . . . . . 533 Fig. 21–1. Energy consumption and GDP per capita for FR countries . . . . . . . . . 548 Fig. 21–2. World primary electricity production by source, 2011 . . . . . . . . . . . . . 552 Fig. 21–3. CO2 sources and pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Fig. 21–4. Production possibility frontiers for Sandy and Dland at their own

and each other’s terms of trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 Fig. 21–5. Potential for gains from trade with comparative advantage. . . . . . . . . 561 Fig. 21–6. Dollar market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 Fig. 21–7. Increasing resource exports appreciate the FR country’s currency . . 563 Fig. 22–1. Cultural preferences for individualism . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Fig. 22–2. Vertical structure and orientation for four corporate structures . . . . 595

xxvi International Energy Markets

Tables Table 2–1. Cosmological and geologic milestones in energy . . . . . . . . . . . . . . .14–15 Table 2–2. The world’s largest oil fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 2–3. Largest accumulations of estimated unconventional oil reserves . . . . 21 Table 2–4. Categories of heavy unconventional oils . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 2–5. Major eras of coal formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 2–6. A few oil and natural gas milestones in recent human history. . . .24–26 Table 3–1. Ten largest coal companies in China in 2010 . . . . . . . . . . . . . . . . . . . . . . 50 Table 3–2. Ten largest US coal producers, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 3–3. Ten additional large world coal producers . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 3–4. Energy content by coal type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 3–5. World coal production, consumption, and reserves, 2010 . . . . . . .52–53 Table 3–6. Global coal use by major sector, 2011 (ktoe) . . . . . . . . . . . . . . . . . . . . . . 54 Table 3–7. Revenues related to elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 4–1. Sample feed-in tariffs for electricity renewables, 2011. . . . . . . . . . . . . . 76 Table 4–2. Some representative severance tax rates for large fossil fuel–

producing states, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80–81 Table 4–3. World survey of selected petroleum product prices, 2012 . . . . . . . . . . 84 Table 5–1. Share of electricity and heat generation by fuel and total

generation, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 5–2. Financing for a representative utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 5–3. US average electricity prices and consumption by customer class,

2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 6–1. Electricity prices and taxes, $/kWh, 2013 . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 7–1. Sample of oil company mergers, acquisitions, and restructuring,

1910–2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Table 7–2. OPEC petroleum, income, and population statistics for 2012 . . . . . . 182 Table 8–1. World dry natural gas consumption, production, and heat

content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187–188 Table 8–2. Rents and quasi-rents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Table 8–3. Likely governance structure matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Table 8–4. Top North American natural gas marketers, 2011 . . . . . . . . . . . . . . . . 201 Table 8–5. Top United States natural gas producers, 2012 . . . . . . . . . . . . . . . . . . . 202 Table 8–6. Top ten interstate pipeline companies by mileage, 2001 and 2011 . . . 204 Table 9–1. What your banker wants to know. . . . . . . . . . . . . . . . . . . . . . . . . . 219–220 Table 9–2. Natural gas: trade movements by LNG 2013 (billion cubic

meters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Tables xxvii

Table 9–3. Data on global liquefaction capacity in 2013 . . . . . . . . . . . . . . . . . . . . . 223 Table 9–4. Developing marginal factor cost for LNG supply function . . . . . . . . . 226 Table 10–1. Population and energy consumption across time, region, and

source (Eastern Europe, Western Europe, and the former Soviet Union). . . . . 240 Table 10–2. Primary energy production and relative share by energy source in

Europe and Eurasia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Table 10–3. Outlet capacity of export pipelines at the FSU border (bcm/year) . . . 252 Table 10–4. Natural gas imports into Europe and Eurasia (LNG and pipeline),

2013 (bcm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Table 10–5. Gas storage capacity in the European Union, 2012 . . . . . . . . . . . . . . 260 Table 10–6. Major gas companies in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . 261–262 Table 11–1. Milestones in US and European Union vehicle emissions

restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Table 12–1. Carbon dioxide, GDP, and population for regions . . . . . . . . . . . . . . . 299 Table 13–1. OPEC flows of crude oil, 2012 (1,000 bbl/d) . . . . . . . . . . . . . . . . . . . . 323 Table 14–1. Typical lifetime of energy-using plant, equipment, and

appliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Table 14–2. Conventional coal, oil, and gas proven reserves for selected

countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Table 14–3. Companies with significant oil or gas production or refinery

capacity, 2011.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358–359 Table 15–1. Example conversions of one kilowatt hour primary electricity

to Btu energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 Table 15–2. Known recoverable resources and mined production of uranium

(tonnes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Table 15–3. Largest uranium producers in the world, 2012 . . . . . . . . . . . . . . . . . . 372 Table 15–4. Nuclear power reactors operating and under construction for

selected countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 Table 15–5. Sample of the world’s largest hydro capacity dams. . . . . . . . . . . . . . . 376 Table 15–6. Estimated levelized cost of new generation resources, 2017 . . . . . . 383 Table 15–7. Oil, natural gas, and NGL reserves and resources, 2012 . . . . . . . . . . 392 Table 16–1. World energy balances, 2011 (mtoe) . . . . . . . . . . . . . . . . . . . . . . 400–401 Table 16–2. Coal and peat use in the world in 2011 (solids in

megatonnes (Mt), gases in petajoules (PJ)). . . . . . . . . . . . . . . . . . . . . . . . . . . 410–411 Table 16–3. World petroleum statistics, 2011 (million metric tonnes). . . . 412–413 Table 16–4. World natural gas statistics, 2011 (pJ) . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Table 16–5. World electricity and heat statistics, 2011 . . . . . . . . . . . . . . . . . . . . . . 416 Table 17–1. Boiling ranges for petroleum products . . . . . . . . . . . . . . . . . . . . . . . . . 440 Table 17–2. Sample crude API gravities and prices, April, 2014 . . . . . . . . . . . . . . 441

xxviii International Energy Markets

Table 17–3. Assays for various crude oil streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 Table 17–4. World refinery capacity by region, 2013 . . . . . . . . . . . . . . . . . . . . . . . . 443 Table 17–5. Reid vapor pressure blending problem . . . . . . . . . . . . . . . . . . . . . . . . . 445 Table 17–6. Summary of refinery problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 Table 17–7. World tanker fleet by size, capacity, and freight rate, 2012. . . . . . . . 454 Table 17–8. Representative tanker distances in nautical miles. . . . . . . . . . . . . . . . 457 Table 17–9. Domestic transport of crude oil, oil products, and coal by modal

share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 Table 17–10. Sample oil pipeline diameters, construction costs, and

capacities, 2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Table 17–11. Largest net exporters and importers of refined petroleum

products in 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Table 18–1. Sample energy futures contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 Table 18–2. Sample futures quotes for heating oil on CME . . . . . . . . . . . . . . . . . . 472 Table 18–3. Gains and losses in the spot market at various prices . . . . . . . . . . . . 474 Table 18–4. Gains and losses in the spot and forward markets at various

delivery prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Table 18–5. Sample US refinery production and prices. . . . . . . . . . . . . . . . . . . . . . 483 Table 19–1. Sample options contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 Table 19–2. Energy futures options quotes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Table 19–3. Variables that affect American option values before expiration . . . 505 Table 20–1. Population, primary domestic energy supply, bioenergy and

waste share, and breakdown by sectoral use, 2011. . . . . . . . . . . . . . . . . . . . . . . . . 514 Table 20–2. Domestic supply of total bioenergy and waste in terajoules and

by source share, 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 Table 20–3. Socioeconomic characteristics of high biofuel users . . . . . . . . 520–521 Table 21–1. Countries averaging more than 14% of GDP from fossil-fuel

rents from 2008–2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Table 21–2. Reserves, energy consumption, and GDP value added by sector . . . 544 Table 21–3. Fossil-rich countries’ energy consumption shares and growth

rate by source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 Table 21–4. Unit gains of trade from specialization (absolute advantage). . . . . . 558 Table 21–5. Specialization gains Baltica (R) and Pacifica (N) (comparative

advantage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Table 21–6. Development indicators for FR countries. . . . . . . . . . . . . . . . . . 564–566 Table 21–7. Sovereign wealth funds from fossil fuels in fossil-rich countries. . . 571 Table 21–8. Net investment in producible capital plus educational expenditure

minus natural capital depletion (average 2000–2010 as percent of GNI) . . . . . 574 Table 22–1. Cultural differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580–581

Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

Chapter 1 Introduction to Our Journey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Some Scientific Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Chapter 2 Energy Lessons from the Past and Modeling the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Energy Geological History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Unconventional Oil Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Coal Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Energy’s Human History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Energy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3 Perfect Competition and the Coal Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Perfect Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Energy Demand and Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Shifts in Supply and Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Demand and Supply Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Supply Elasticities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Using Elasticities to Forecast Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Price Changes from a Supply Disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Creating Demand and Supply from Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii

viii International Energy Markets

Chapter 4 Energy Price Controls, Taxes, Subsidies, and Social Welfare . . . . . . . . . . . . . . . . . . . . . . 71

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Government Price Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Government Taxes and Subsidies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Types of Taxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Modeling Taxes in a Competitive Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Incidence of Tax Depends on Demand and Supply Elasticities . . . . . . . . . . . . . 89 Consumer and Producer Surplus Show Deadweight Loss from a Tax . . . . . . . 90 Energy Subsidies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5 Natural Monopoly and Electricity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Electricity Market Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Modeling Electricity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Load Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Monopoly in a Decreasing Cost Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Government Policy for a Natural Monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Rate of Return Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Problems with Rate of Return Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Valuing Money across Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Utility Rate of Return on a Bond or Stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Utility Rate Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Utility Cost Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Peak-Load Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 6 Restructuring in the Electricity Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Problems with Regulated and Government-Owned Utilities . . . . . . . . . . . . . . 125 Models for the Electricity Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Examples of Electricity Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Evaluation of Early Reforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 7 Monopoly, Dominant Firm, and OPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Monopoly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Contents ix

Monopoly Compared to Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Price Controls in a Monopoly Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Antitrust Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Brief History of Oil Markets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Multiplant Monopoly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 OPEC’s Demand Curve and Marginal Revenue Curve. . . . . . . . . . . . . . . . . . . . 174 Price Elasticity of Demand for OPEC’s Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Non–Profit Maximization Goals for OPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Chapter 8 Market Structure, Transaction Cost Economics, and US Natural Gas Markets . . . . . . . . . 185

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Natural Gas Consumption and Production Worldwide. . . . . . . . . . . . . . . . . . . 186 Natural Gas Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Transaction Cost Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Evolution of the US Natural Gas Industry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Gas Consumers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Gas Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Volatility in the Natural Gas Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 North and South of US Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Chapter 9 Monopsony: Japan and the Asia-Pacific LNG Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 LNG Production and Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 LNG Monopsony on Input Market, Competitor on Output Market . . . . . . . 225 Monopsony Model Compared to Competitive Model . . . . . . . . . . . . . . . . . . . . 229 Monopsony Model with Price Discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Monopoly and Bilateral Monopoly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Bargaining and Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Chapter 10 Game Theory and the European Natural Gas Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Coal and Oil Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Coal and Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Natural Gas Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Primary Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 European Market Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Cournot Duopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

x International Energy Markets

Duopoly Compared to Competitive Market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Monopoly Compared to Competitive and Duopoly Market . . . . . . . . . . . . . . . 269 Other Game Theory Models: Bertrand and Stackelberg . . . . . . . . . . . . . . . . . . 270 Limit Pricing Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Chapter 11 Externalities and Energy Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Pollution as a Negative Externality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Optimal Level of Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Regional Differences in Optimal Pollution Levels . . . . . . . . . . . . . . . . . . . . . . . . 282 Evolution and International Comparison of Vehicle Emission Standards . . . 283 Abatement across Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Difficulties Measuring Costs and Benefits of Pollution . . . . . . . . . . . . . . . . . . . 288 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Chapter 12 Public Goods and Global Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Public Goods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Two Other Abatement Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Energy Conservation and Its Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 Energy Efficiency Gap and Policy Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Government Failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Global Carbon Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Chapter 13 Safety and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Market Responses to Uncertainty and Disruption . . . . . . . . . . . . . . . . . . . . . . . 321 Governments and Energy Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Energy Accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 US Government Promotion of Nuclear Power. . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Chapter 14 Allocating Fossil Fuel Production over Time and Oil Leasing . . . . . . . . . . . . . . . . . . . . . . 335

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Reserves and Reserves-to-Production Ratios (R/P) . . . . . . . . . . . . . . . . . . . . . . 336 Dynamic Two-Period Competitive Optimization Models without Costs . . . 339 Model One (No Costs, No Income Growth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Contents xi

Model Two (No Costs, Income Growth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Model Three (No Costs, No Income Growth, Lower Interest Rate) . . . . . . . . 347 Model Four (No Costs, No Income Growth, Increased Reserves) . . . . . . . . . . 348 Model Five (No Income Growth, with Costs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Model Six (No Income Growth, No Costs, with Backstop Technology). . . . . 352 Dynamic Multiperiod Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 Dynamic Models with Market Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 Taxing and Bidding Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 A Foray into the Real World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Chapter 15 Supply and Costs Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Nuclear Fuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Hydroelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 Other Renewable Energy Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Unit or Levelized Costs of Wind Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 Solar Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Inground and Aboveground Costs for Gas and Oil. . . . . . . . . . . . . . . . . . . . . . . 383 Unit Costs with No Decline Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 Developing Cost Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Estimating Total Energy Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Chapter 16 Energy Balances and Energy Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Energy Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 Household or Consumer Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 Consumer Demand and a Subsidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Factor Demand for the Industrial, Commercial, and Electricity Sectors . . . . 426 Econometric Estimates of Energy Demand—Picking the Functions . . . . . . . . 429 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Chapter 17 Linear Programming, Refining, and Energy Transportation . . . . . . . . . . . . . . . . . . . . . . . 437

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Crude Oil Refining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Gasoline Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 Linear Programming to Optimize Refinery Profits . . . . . . . . . . . . . . . . . . . . . . . 446 Energy Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

xii International Energy Markets

Chapter 18 Energy Futures Markets for Managing Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Energy Futures Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 Hedging with Energy Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 What Determines Energy Future Prices on Commodities?. . . . . . . . . . . . . . . . 476 Efficient Market Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 Crack and Spark Spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 Speculation and High Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Chapter 19 Energy Options for Managing Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Pricing Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Options Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Valuing Options with Replicating Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Creating Probabilities for a Binomial Lattice Model. . . . . . . . . . . . . . . . . . . . . . 499 Variables that Affect Option Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Option Trading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Energy Swaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Chapter 20 Climbing the Energy/Development Ladder to Sustainability . . . . . . . . . . . . . . . . . . . . . . . 511

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 Combustible Biomass and the World’s Poor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 Collecting Wood from the Commons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 Energy and Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 Renewable Energy Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Optimal Timber Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Chapter 21 Sustainable Wealth in Fossil Fuel–Rich Developing Countries. . . . . . . . . . . . . . . . . . . . . 541

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 Fossil Future for FR Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 Primary Electricity and Modern Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 Economic Issues in Fossil Fuel–Rich Countries. . . . . . . . . . . . . . . . . . . . . . . . . . 556 Investing Fossil Rents for a Sustainable Future . . . . . . . . . . . . . . . . . . . . . . . . . . 570 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Contents xiii

Chapter 22 Managing in the Multicultural World of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 Universalism and Particularism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 Cognitive Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 Life Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 Business Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 Human Dimensions of Managing Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Think Like an Economist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 Managing on the Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 Managing across Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 When Markets Fail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Appendix A Energy Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

Appendix B Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Note: An online glossary for this text can be found at http://dahl.mines.edu/glossary.pdf.

1 Introduction to Our Journey

Energy economists want to get the price right. Politicians can’t define obscene energy prices but know them when they see them. Energy traders believe that everything has a price and they know it, but if you outlaw price, only outlaws will know it.

—Modified from Unknown Author

Whether you are an energy economist, a politician, an energy trader, or an energy consumer, energy and its price will be of interest to you. Energy in all its forms can help you live an easier and more comfortable life. In the 1950s, it was touted that nuclear power would introduce an era when energy would be a nonscarce resource and we would have power too cheap to meter. Thus, we would be in a bear market with perpetually decreasing prices. Unfortunately, this prediction has not yet come to pass. Useful energy is still scarce, since we need capital, labor, and technical know-how to convert abundant but heterogeneous energy resources into the forms we all use. Sometimes useful energy is scarcer than at other times, with prices rising in a bull market or falling in a bear market. These shifts happen as consumers and producers react to changes in the market, including income, expectations, depletion, costs, and technology. But whether the market is running with the bulls or hibernating with bears, we want to use our energy resources wisely.

Energy is just one of four basic factors of production, the others being nonenergy natural resources, capital, and labor. Nor is energy the largest building block by value. Labor generally claims that prize. For example, labor’s share of the gross domestic product (GDP) is somewhat greater than 60% in the United States, while energy expenditures have not exceeded 10% of US GDP since 1985 (Mutikani 2012). Nevertheless, energy is just as crucial as the other factors. It is the ability to do work, and without work, none of the other factors could be made into the products that we enjoy every day.

My goal in this text is to consider how to use this precious factor wisely. However, the principles here apply to choices for all factors and facets of our lives where scarcity is present. Life is full of choices. Economics is about making good choices in the presence of scarcity. Since we still feel the pinch of scarcity in the

1

2 International Energy Markets

energy realm, I will present the economic fundamentals, along with technical and institutional knowledge needed to implement sound economic, business, and government policy decisions relating to energy industries.

Some Scientific Principles Although useful energy is scarce and, hence, is not free, it is hard to imagine truly

running out of energy (E ) any time soon, as it is all about us. Energy, as Einstein’s famous equation (E = mc2) points out, is strongly tied to another fundamental concept in the universe, mass (m). Historically, this interchangeability of mass and energy and other scientific principles has led to major technological energy breakthroughs in the generation of electricity, transistors, nuclear fission and fusion, microwaves, lasers, iPads, and more. Science and technology are likely our best hope for even more spectacular breakthroughs in the future, as we transition out of fossil fuels and into renewable, and perhaps even to an as-yet-undiscovered source of clean, abundant energy. In the process, we need the underlying science to know if the source is possible. We also need the engineering skills to produce and deliver it, the socio-cultural sensitivity to disseminate it to a global audience, and the economic savvy to do it all at a profit. We will touch on all these attributes, with a focus on the economic aspect in this text, as well as in related material that will be posted and updated at http://dahl.mines.edu.

Let’s begin with some scientific principles related to energy. Scientists refer to four fundamental forces that govern all fundamental interactions between objects: gravity, electromagnetic, weak nuclear, and strong nuclear. These forces are responsible for all the familiar forms of energy we use. Conventional notions of force can be thought of as some sort of pressure on matter that can cause matter to move. Newton discovered the first of the four fundamental forces of physics— gravity. Although this is the weakest of the forces, it has the greatest reach and is also applicable to bodies at great distances from each other, such as galaxies.

The reach of a fundamental force is referred to as its field. The force exerted by gravity between two bodies is directly related to their masses and inversely related to the distance or space between them. Thus, the bigger the body, the more force it exerts. Bodies that are further apart exert less force.

So how does gravitation relate to energy? Energy can be thought of as the potential to do work, where work can be thought of as force acting over a distance. Thus, the force of gravity has the potential to cause water to flow from a higher to a lower elevation. If the force is exercised and water flows, it is called kinetic energy. If the water is constrained and not allowed to flow, the energy is stored and is called potential kinetic energy. However, the energy will become kinetic energy once the operator of the dam opens the sluice gates and allows the water to flow. Kinetic energy is measured in joules (J) according to the international system of units (SI) and the metric system. (Energy is also measured in calories, with 1 calorie equal

Chapter 1 Introduction to Our Journey 3

to 4.1855 joules, or in nonmetric British thermal units [Btu], with 1 Btu = 1.055 thousand joules or 1 kilojoule [kJ].) Unfortunately, despite its many advantages, the metric system is not yet in popular use in the United States. Some advantages of the metric system include the following:

• The metric system is used worldwide, with the exception of the United States, Myanmar, and Burma.

• Units in multiples of tens make computations easier to learn, easier to use, and less error prone.

• Standardized prefixes make it easier to grasp related dimensions. • Not having to convert across systems or to own redundant tools

and equipment saves time and money for a seamless fit into the global economy.

Since the system was created by scientists to be logical, consistent, and easy to use, it is the worldwide standard in science. Metric equivalents and their abbreviations will be provided throughout. However, we still live in an imperfect world and have to navigate between the systems. Thus, while we are waiting and agitating for a more perfect metric world, popular US energy equivalents will be given as well.

The next unifying principle came from Maxwell, a couple of hundred years later. He discovered that electrostatics, magnetism, and light could all be explained under one unifying force and theory—the electromagnetic force and electromagnetism.

This second fundamental force is the attraction between oppositely charged particles and the repulsion between like-charged particles. Static charges create an electric field and are responsible for electricity. Moving charges create a magnetic field, and accelerating charges create electromagnetic radiation. This radiation, from the longest to the shortest wavelength, lowest to highest frequency, and lowest to higher energy, with some familiar uses, includes the following:

• Radio waves. Transmit signals for radio and television, and some radar uses.

• Microwaves. Cook food, cellular phone communication, radar, and monitor precipitation.

• Infrared waves. Medical imaging, remote controls, and night vision. • Visible light. Normal vision, communication through fiber optic cables,

and lasers. • Ultraviolet rays. Sterilize bacteria and viruses, including those on clothes

hung out to dry. • X-rays. Medical imaging, tumor destruction, and security imaging. • Gamma rays. Treatment of disease and checking pipeline welds.

In the period around 1900, Thomson, Rutherford, and others gave us a more consistent view of the atom, with a positive charge in the center and negatively charged electrons circling the nucleus. The electromagnetic force between positive

4 International Energy Markets

and negative charges holds atoms together, and the residual force between electrons in one atom and protons in another holds molecules together. When molecules are formed or break apart, electromagnetic energy may be emitted or absorbed. Thus, electromagnetism is a unifying principle for all of chemistry. It is responsible for the heat and light when we burn fossil fuels.

Electromagnetic radiation travels at the speed of light (c) and can behave like a wave, with a crest and a trough. The wavelength is the distance from one crest through a trough to the next crest. The frequency (f) of the cycle is how many wavelengths the energy travels in a second and is called a hertz. The velocity (v) of the radiation in meters per second (m/s) equals the wavelength (λ) in meters times the frequency (v = λf). Electromagnetic radiation can also be thought of as photons—similar to little energy packets. In a photovoltaic cell, when light photons hit the semiconductors, this energy causes electrons to be emitted, forming a direct current.

The weak nuclear force was formulated by Fermi. It is another of the four fundamental forces that govern radioactivity. It allows neutrons in an atom to break into a proton, an electron (beta particle), and an antineutrino. It also allows larger alpha particles (two protons and two neutrons—the equivalent of a helium nucleus) to be emitted.

At this point, we still do not know what holds these positively charged protons together in the nucleus. The electromagnetic force suggests they should repel each other. The fourth fundamental force comes to the rescue, and it keeps everything from flying apart. It is the strongest force but has a very short range. It holds all the particles in the nucleus together. It too was hypothesized to exist in the 1930s, with the discovery that protons and neutrons make up the nucleus. When the strong force is broken by breaking apart elements heavier than iron, fission energy is liberated. When this force is exploited to fuse together elements lighter than iron, fusion energy is also liberated. However, fusing heavier elements than iron and breaking apart lighter elements than iron require a net input, rather than a release, of energy.

Although the current scientific knowledge is more complicated than the discussion above, this simplified discussion gives us some intuition about the basic energy forms we use. (For more information on newer ideas relating to the physics of energy, see http:\dahl.mines.edu\b0101.pdf.)

Energy is generated from the four fundamental forces, with commercial energy coming in six familiar forms:

1. Mechanical energy is associated with motion. Falling water resulting from gravity can turn a grinder, wind resulting from temperature differentials through electromagnetism can turn a wind turbine, and human and animal power can be used to move objects fueled by the chemical reaction of food.

Chapter 1 Introduction to Our Journey 5

2. Chemical energy is released when molecular bonds are broken or changed, as in the combustion of fossil fuels, such as coal, oil, and natural gas, or with biomatter, such as dung, wood, and crop residues. Such chemical energy from the electromagnetic force may be turned into mechanical energy, as in the internal combustion engine.

3. Thermal energy is a measure of the heat in the vibrations of molecules. It may result from friction. It may also be a product of the chemical energy of combustion. Geothermal energy, which is heat from within the earth, may be heat stored from the formation of the earth, supplemented with heating from pressure and radioactive decay (Cornell Center for Materials Research 1999).

4. Radiant energy is all forms of electromagnetic radiation. Solar energy is a critical source of radiant energy, with about 40% in the infrared and longer wavelength range, about 50% in the visible range, and about 10% in the ultraviolet or shorter wavelength range (University of California Museum of Paleontology, n.d.).

5. Nuclear energy from fusion and fission results from the strong nuclear force. It is changed to mechanical and other forms of energy in nuclear submarines, the explosions of nuclear weapons, and in nuclear power plants.

6. Electrical energy is the movement of electrons caused by the electromagnetic force. If the electrons travel one way through a wire, we have direct current. If the electrons continually reverse directions flowing back and forth, we have the more common alternating current.

In any system, we can transform energy from one form into another; for example, the mechanical energy of a stream can be turned into electricity by a hydro unit. The resulting electricity can be turned into heat and light in a home or can run a machine in a factory. With these changes, the first law of thermodynamics requires that the total amount of energy in an isolated system will always remain constant. Why then is energy scarcity a problem? The reason lies in the second law of thermodynamics, which requires that when energy is converted, it is reduced in quality and in its ability to do work. Thus, with each energy conversion, we have the same total amount of energy, but we have less available energy to do work. For example, the generation of electricity using a conventional thermal plant produces both heat and electricity. Although the heat generated may be used to warm oyster beds or might even provide district heat, it is often at too low a temperature or too far from a market to be otherwise usefully captured for work (Georgescu-Roegen 1979; Hinrichs 1996).

An understanding of the economical use of energy is interdisciplinary. Hence, in this book, we will combine knowledge of economics and mathematical analysis with institutional and technical information to better understand various energy markets. A discussion of the topics covered follows.

6 International Energy Markets

Outline of the Book Since the advent of the big bang, theorized to have occurred some 13 billion

years ago, energy has remained a fundamental component of the universe. Humans, who arrived only a few million years ago, have consumed only a small portion of the vast supply of energy on just one small planet. Part of the ascent of humans has been the process of learning how to use ever more of this supply of energy to help satisfy basic needs, along with space conditioning, transportation, and entertainment.

In chapter 2, we set the stage for the book by considering energy’s geological past and the evolution of human energy use and technology. We also address methodologies for forecasting its use in the future and analyzing energy economy and environmental interactions.

In chapter 3, we consider our first market model, perfect competition. Markets consist of buyers and sellers getting together and exchanging goods or services. We can refer to a market for a particular good, such as coal, or a class of goods, such as energy. Economists often loosely refer to the market as the accumulation of all the consumers and producers buying and selling all goods and services.

Economists often favor competitive markets in a capitalist economy for allocating scarce resources. They feel that the discipline of the market helps to create efficiencies and minimize costs. The lure of profits helps attract capital away from shrinking markets to growing ones, spurs innovation, and promotes new products. With competition and decentralized decision making, capitalist economies are more flexible and personal freedom is enhanced.

Our discussion of competitive markets in a static framework is applied to the coal industry. Principles of demand and supply help us to understand how market prices are influenced and how energy industries evolve. Coal, once the linchpin of industrial economies, has been slowly surpassed, as markets have attracted resources toward oil and gas and away from coal. However, such trends can change, as we see with recent large increases in coal use in China. Demand and supply elasticities, which capture responsiveness to price and income, are developed and used to analyze such market changes. In turn, elasticities can also be used to recreate demand and supply curves.

Energy resources are often publicly owned and considered basic wealth to a society. As such, they are usually taxed, sometimes quite heavily. In chapter 4, we consider energy taxes in the context of a static model. Criteria for tax collection such as equity and fairness will be considered. Who pays, or the incidence of the tax, depends on how responsive demanders and suppliers are to market price. Measures of this price responsiveness (price elasticities), developed in chapter 3, will be used to show tax and subsidy incidence. Price controls, another way that governments interfere with markets, will also be considered.

Chapter 1 Introduction to Our Journey 7

Although economists often favor markets and private ownership for the allocation of goods and services, there are a number of cases where economists generally agree that markets fail and that room exists for the government to step in. One such case is a decreasing cost industry, in which the greater the production, the lower the unit costs. Such industries are considered natural monopolies.

For many years, the electricity industry’s huge capital costs and economies of scale had been considered a natural monopoly. In such an industry, we prefer one producer on the grounds of greater efficiency, since the biggest producer has the lowest average cost. However, one private producer would be able to monopolize the industry and make monopoly profits.

In chapter 5, we consider the electricity industry, summarize the various technologies for generating electricity, and discuss how government ownership and price regulation have been used to try to control monopoly profits.

Problems with both government ownership and regulation, along with technical change in electricity generation, have led to deregulation, privatization, and restructuring of electricity generation in numerous markets, which is discussed in chapter 6. Classic deregulation examples in New Zealand, the United Kingdom, and Scandinavia will be considered, along with the horrific problems accompanying the restructuring of regulated markets in California.

If large producers have market power and are able to set prices, they can make monopoly profits. A classic example of this market failure is the Organization of Petroleum Exporting Countries (OPEC), which we consider in chapter 7. Some history of OPEC and models to explain OPEC’s behavior are also given. Since OPEC cannot control non-OPEC production, it will be treated as a dominant firm, rather than a monopoly. Since OPEC is not a monolith but is comprised of 12 different countries, some of their differences will be noted as well.

With deregulation, the institutional arrangements or governance structures in markets are likely to evolve. Such structures include spot purchases, long-term contracts, or vertical integration. Transaction cost economics suggests that the market structure that survives is the one that minimizes transaction costs. Specificity of assets in the industry will influence market governance. For example, a pipeline is a very specific asset, transporting a specific good from one specific place to another, whereas a semi-truck is much less specific and can transport a variety of goods to and from a variety of places. Market governance is also influenced by the amount of uncertainty and the frequency of transactions, all of which influence transaction costs. In chapter 8, we consider transaction cost economics and apply it to changes in the US natural gas markets.

Market power for either buyers or sellers leads to an inefficient allocation of resources. If there is only one buyer in a market, we refer to this market structure as monopsony. One buyer is able to depress the buying price and reap monopsony profits. A multinational company with exclusive rights to buy energy resources in a small developing country with a weak government would be an example of market

8 International Energy Markets

power on the part of the buyer. With the famous Red Line agreement in 1928, the multinational oil companies of the time carved up the Middle East and agreed not to compete with each other over resources, preserving their monopsony power. We consider the monopsony model in chapter 9 and apply it to Japan’s purchases of liquefied natural gas (LNG) in the Asia-Pacific market.

A single multinational oil company dealing with a strong government in an energy-rich developing country would be an example of a bilateral monopoly, which is a monopsonist (one buyer in a market) buying from a monopolist (one seller in a market). In this case, the outcome is ambiguous and depends on the negotiation skills of the two players in the market. Chapter 9 concludes with pointers on negotiation.

A few buyers or a few sellers in a market constitute oligopsony and oligopoly, respectively. These models get more complicated, as their outcome depends on the strategies of all the players in the market. We consider these market structures in the context of game theory, with an application to the European natural gas market in chapter 10.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Quick Mentor
Supreme Essay Writer
A+GRADE HELPER
Instant Assignment Writer
Finance Homework Help
Math Exam Success
Writer Writer Name Offer Chat
Quick Mentor

ONLINE

Quick Mentor

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$46 Chat With Writer
Supreme Essay Writer

ONLINE

Supreme Essay Writer

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$43 Chat With Writer
A+GRADE HELPER

ONLINE

A+GRADE HELPER

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$17 Chat With Writer
Instant Assignment Writer

ONLINE

Instant Assignment Writer

As per my knowledge I can assist you in writing a perfect Planning, Marketing Research, Business Pitches, Business Proposals, Business Feasibility Reports and Content within your given deadline and budget.

$32 Chat With Writer
Finance Homework Help

ONLINE

Finance Homework Help

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$26 Chat With Writer
Math Exam Success

ONLINE

Math Exam Success

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$28 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Broad internal focus examples - Lumo energy gas rates - Haiti yahoo answers - Bowling jokes and riddles - Practical Connections Assignment - Employment Law1 - Moment of inertia for a solid disk - Does temperature affect density - Tst 102 sraw test plan - How is the media biased and in what direction - As nzs 2243.8 2014 - This is america analysis essay - Formal outline - Pp - Conducting a Needs Assessment - Climate kic master label - Recrystallization of benzoic acid chemical equation - Case study paper format - Key audit objectives for a client's payroll function - W2ChangedocJournal - To the right honourable william earl of dartmouth - Which one of the following statements concerning the balance sheet is correct? - Rational license key server download - Assignment2-Operating system - In a suit against ian, jenna obtains an injunction. this is - Concave and convex lenses worksheet - Culturally competent care for amish - Moral subjectivism - Opposite 20 on dartboard - Minor 2 - When is friction good - Goodlyburn primary school perth - Hsc business studies paper - Critical appraisal assignment examples - Stupid america poem analysis - Leadership essay - I need 2500 words on Television Affects - 5 gallons of water weighs how many pounds - Scott v coulson 1903 - Dr michael kohn paediatrician - Nicomachean ethics book 1 section 7 - Is devondale cheese halal certified - Module 2 Discussion Post - What are the three branches of government australia - Percent acetic acid in vinegar lab - Psychology - Procurement Law - Health Care Delivery System SLP 2 - Grundfos magna1 flashing red - Trade and cash discount exercise - Cushion stuffing crossword clue - MKTG201 Week 3 Asignment - Week-7 discussion cpm - How to calculate current carrying capacity in pcb via - Benzodiazepines mast cell stabilizer - Leisure access card workington - Letter of authority vicroads template - Best calibre for sambar deer - Homework - Ecosystems at risk essay - Sammy will paraphrase an article for his class - Explain how the spectroscope will be calibrated - How does a fuming chamber work - P kolino business plan analysis - Nmba supervision guidelines for nursing and midwifery - General mills case study - Contra entry in sales ledger control account - Hume libraries vic gov au - Pacemaker potential is a result of - Ac relay coil snubber - SOCW 6111 - Round robin scheduling code in c++ - Legal Compliance(Go through the PDF ) - Climax of the secret life of walter mitty - Usyd unit of study outlines - Charlie and the chocolate factory book theme - Legal studies practice exams - Peer evaluation rubric for presentation - Mistakes were made but not by me pdf - Writing a critique in apa format - Fiber length measurement method - 9.4 visualizing with venn answers - Career counseling case examples - Production method and steps for danish pastry - Udavum karangal anna nagar - Assignment #1-FRL - I need help writing a paper on Saint Leo University Core Values, how they relate to Marketing... - Nursing questions - Need Macroeconomic analysis tutor - Expository writing graphic organizer - Puppies for sale template - Different types of business transactions in accounting - (Discussion Questions) - Personality Assessments/ Tests of Knowledge and Skill - BLOEMFONTEIN •[+̳2̳7̳6̳1̳0̳4̳8̳2̳0̳7̳1̳••]@)) EARLY TERMINATION- PILLS FOR SALE IN BLOEMFONTEIN CENTURION, KEMPTON PARK - Lindner fund v abney - Bms lighting control system - Chapter 22 give me liberty - Expected payoff table - Cisco sx20 camera cable - Are interest groups good or bad for democracy