Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Binary to gray code truth table

01/12/2021 Client: muhammad11 Deadline: 2 Day

Logism Combinational Logic Circuit. Balanced Gray Code To Binary Code With Hex Display.

Preface

You will need Logisim to complete this project assignment. Further information about LogiSim is at http://www.cburch.com/logisim/. If you have not done so already, download and install Logisim 2.7.1 from http://sourceforge.net/projects/circuit/.

1. Introduction

The objective of this project is to reinforce your understanding of binary codes, combinational logic design, and logic simulation. You must: (i) design a combinational logic circuit that displays the hexadecimal value of a gray code input according to the specifications given below; (ii) debug and test your design by simulating it using the Logisim simulator; and (iii) document your work in a short report.

2. Gray Codes

Consider a system where a value is changed by being incremented or decremented by one. The value is encoded by n binary signals. As a specific example, consider a value, represented with 4 bits, being incremented from 3 to 4. In a traditional weighted binary encoding, 3 is represented as 0011 and 4 is represented as 0100. For the change from 3 to 4, three bits must change. Since the time of the transitions in the actual signals will always be different if examined at a sufficiently fine scale, the value will not change instantaneously from 3 to 4. As an example, the transition could occur as follows, where the transitions to value 7 and then value 5 are transient in nature.

0011 (3) ® 0111 (7) ® 0101 (5) ® 0100 (4)

The physical reality of such signal transitions can create problems for applications including mechanical encoders and asynchronous (clock-free) systems. This problem can be overcome using Gray codes, which are non-weighted codes that can be used to represent values. Gray codes have the special property that any two adjacent values differ in just one bit. For example, the standard four-bit Gray code for 3 is 0010 and the code for 4 is 0110. These two codes differ in just one bit, the second bit from the left. So, only a single signal needs to change from 0 to 1 (or 1 to 0 for other values) to represent an adjacent value. You can read more about Gray codes at http://en.wikipedia.org/wiki/Gray_code.

For this project we consider a special type of Gray code called a Balanced Gray code. In a Balanced Gray code, the number of transitions for each bit position is the same when counting through the values. For example, a four-bit Balanced Gray code can be used to count from 0 to 15 (hexadecimal F). There are 16 transitions as the count goes from 0 to 1 to 2 and so on to 15 and then back to 0. For a Balanced Gray code, there are four bit transitions for each of the four bit positions during the 16 total transitions. This property is useful in some applications.

Table I below shows the encoding of hexadecimal values 0 through F using a 4-bit Balanced Gray code.

Table I. Hexadecimal Values and Associated 4-bit Balanced Gray Code and Binary Code

Hexadecimal
Value

Balanced Gray Code
(X3 X2 X1 X0)

Binary
Code
(Y3 Y2 Y1 Y0)

0

0 0 0 0

0 0 0 0

1

1 0 0 0

0 0 0 1

2

1 1 0 0

0 0 1 0

3

1 1 0 1

0 0 1 1

4

1 1 1 1

0 1 0 0

5

1 1 1 0

0 1 0 1

6

1 0 1 0

0 1 1 0

7

0 0 1 0

0 1 1 1

8

0 1 1 0

1 0 0 0

9

0 1 0 0

1 0 0 1

A

0 1 0 1

1 0 1 0

B

0 1 1 1

1 0 1 1

C

0 0 1 1

1 1 0 0

D

1 0 1 1

1 1 0 1

E

1 0 0 1

1 1 1 0

F

0 0 0 1

1 1 1 1

3. Design Specification

You are to design a combinational logic circuit that accepts a four-bit Balanced Gray code (X3 X2 X1 X0) as its input and creates a four-bit output (Y3 Y2 Y1 Y0) that uses standard binary encoding to represent the same hexadecimal value. In other words, the circuit translates between the Balanced Gray code input and the binary code output as indicated in Table I. Figure 1 provides a block diagram of the function. You do not need to minimize the logic function or associated circuit, but you may choose to do so.

Note that Table I is not a true truth table in that it is not ordered by input. You can rearrange the rows in Table I to construct a standard truth table with inputs X3 X2 X1 X0 appearing in order from 0000, 0001, 0010, …, 1111.

Figure 1. Block diagram of the converter function.

4. Modeling the Circuit in Logisim

Use the Pin device in Logisim’s Wiring library to control the four inputs (X3 X2 X1 X0) to the combinational circuit. The Pin device is also available on Logisim’s toolbar. Each pin can be interactively set to 0 or 1 using Logisim’s Poke tool to test the circuit for different Balanced Gray code input values. If the proper connections are in place when Logisim is running, signals with logic level 1 appear in bright green and signals with logic level 0 are shown in dark green.

The circuit’s four output bits should be used to control a hexadecimal display to show values 0 through F, inclusive. Use the Hex Digit Display device in Logisim’s Input/Output library. It accepts a 4-bit binary encoded value as input and displays the hexadecimal digit corresponding to the binary-encoded input. Use the Splitter device in Logisim’s Wiring library to interface the four individual single bits produced by the combinational circuit (Y3 Y2 Y1 Y0) to the four-bit wide input to the Hex Digit Display. The Hex Digit Display device has a second input to control the decimal (hexadecimal) point. The decimal point input can be left unconnected.

Figure 2 shows a possible layout for the design. The associated Logisim circuit file is provided with this assignment.

Figure 2. Possible circuit layout including logic to produce output Y0 (input is for Balanced Gray Code value 0011 which produces output 1100 or hexadecimal C).

The design in Figure 2 includes the combinational logic to produce output Y0. By observation, we see that output Y0 is true if and only if there are an odd number of logic 1 inputs. Thus, Y0 is implemented by the exclusive-or (XOR) function, i.e., Y0 = X3 Å X2 Å X1 Å X0. For the Logisim XOR Gate, the Multiple-Input Behavior attribute needs to be set to “When an odd number are on.”

5. Simulation

After you create your design, use Logisim to simulate the code conversion circuit. You should test all 16 possible input combinations and verify that the correct values of Y3, Y2, Y1, and Y0 are produced and that the correct hexadecimal value is displayed.

Preface
· You will need Logisim to complete this project assignment. Further information about LogiSim is at http://www.cburch.com/logisim/. If you have not done so already, download and install Logisim 2.7.1 from http://sourceforge.net/projects/circuit/.

1. Introduction
The objective of this project is to reinforce your understanding of binary codes, combinational logic design, and logic simulation. You must: (i) design a combinational logic circuit that displays the hexadecimal value of a gray code input according to the specifications given below; (ii) debug and test your design by simulating it using the Logisim simulator; and (iii) document your work in a short report.

2. Gray Codes
Consider a system where a value is changed by being incremented or decremented by one. The value is encoded by n binary signals. As a specific example, consider a value, represented with 4 bits, being incremented from 3 to 4. In a traditional weighted binary encoding, 3 is represented as 0011 and 4 is represented as 0100. For the change from 3 to 4, three bits must change. Since the time of the transitions in the actual signals will always be different if examined at a sufficiently fine scale, the value will not change instantaneously from 3 to 4. As an example, the transition could occur as follows, where the transitions to value 7 and then value 5 are transient in nature.

0011 (3)  0111 (7)  0101 (5)  0100 (4)

The physical reality of such signal transitions can create problems for applications including mechanical encoders and asynchronous (clock-free) systems. This problem can be overcome using Gray codes, which are non-weighted codes that can be used to represent values. Gray codes have the special property that any two adjacent values differ in just one bit. For example, the standard four-bit Gray code for 3 is 0010 and the code for 4 is 0110. These two codes differ in just one bit, the second bit from the left. So, only a single signal needs to change from 0 to 1 (or 1 to 0 for other values) to represent an adjacent value. You can read more about Gray codes at http://en.wikipedia.org/wiki/Gray_code.

For this project we consider a special type of Gray code called a Balanced Gray code. In a Balanced Gray code, the number of transitions for each bit position is the same when counting through the values. For example, a four-bit Balanced Gray code can be used to count from 0 to 15 (hexadecimal F). There are 16 transitions as the count goes from 0 to 1 to 2 and so on to 15 and then back to 0. For a Balanced Gray code, there are four bit transitions for each of the four bit positions during the 16 total transitions. This property is useful in some applications.

Table I below shows the encoding of hexadecimal values 0 through F using a 4-bit Balanced Gray code.

Table I. Hexadecimal Values and Associated 4-bit Balanced Gray Code and Binary Code

Hexadecimal Value

Balanced Gray Code (X3 X2 X1 X0)

Binary Code (Y3 Y2 Y1 Y0)

0

0 0 0 0

0 0 0 0

1

1 0 0 0

0 0 0 1

2

1 1 0 0

0 0 1 0

3

1 1 0 1

0 0 1 1

4

1 1 1 1

0 1 0 0

5

1 1 1 0

0 1 0 1

6

1 0 1 0

0 1 1 0

7

0 0 1 0

0 1 1 1

8

0 1 1 0

1 0 0 0

9

0 1 0 0

1 0 0 1

A

0 1 0 1

1 0 1 0

B

0 1 1 1

1 0 1 1

C

0 0 1 1

1 1 0 0

D

1 0 1 1

1 1 0 1

E

1 0 0 1

1 1 1 0

F

0 0 0 1

1 1 1 1

3. Design Specification
You are to design a combinational logic circuit that accepts a four-bit Balanced Gray code (X3 X2 X1 X0) as its input and creates a four-bit output (Y3 Y2 Y1 Y0) that uses standard binary encoding to represent the same hexadecimal value. In other words, the circuit translates between the Balanced Gray code input and the binary code output as indicated in Table I. Figure 1 provides a block diagram of the function. You do not need to minimize the logic function or associated circuit, but you may choose to do so.

Note that Table I is not a true truth table in that it is not ordered by input. You can rearrange the rows in Table I to construct a standard truth table with inputs X3 X2 X1 X0 appearing in order from 0000, 0001, 0010, …, 1111.

Figure 1. Block diagram of the converter function.

4. Modeling the Circuit in Logisim
Use the Pin device in Logisim’s Wiring library to control the four inputs (X3 X2 X1 X0) to the combinational circuit. The Pin device is also available on Logisim’s toolbar. Each pin can be interactively set to 0 or 1 using Logisim’s Poke tool to test the circuit for different Balanced Gray code input values. If the proper connections are in place when Logisim is running, signals with logic level 1 appear in bright green and signals with logic level 0 are shown in dark green.

The circuit’s four output bits should be used to control a hexadecimal display to show values 0 through F, inclusive. Use the Hex Digit Display device in Logisim’s Input/Output library. It accepts a 4-bit binary encoded value as input and displays the hexadecimal digit corresponding to the binary-encoded input. Use the Splitter device in Logisim’s Wiring library to interface the four individual single bits produced by the combinational circuit (Y3 Y2 Y1 Y0) to the four-bit wide input to the Hex Digit Display. The Hex Digit Display device has a second input to control the decimal (hexadecimal) point. The decimal point input can be left unconnected.

Figure 2 shows a possible layout for the design. The associated Logisim circuit file is provided with this assignment.

Figure 2. Possible circuit layout including logic to produce output Y0 (input is for Balanced Gray Code value 0011 which produces output 1100 or hexadecimal C).

The design in Figure 2 includes the combinational logic to produce output Y0. By observation, we see that output Y0 is true if and only if there are an odd number of logic 1 inputs. Thus, Y0 is implemented by the exclusive-or (XOR) function, i.e., Y0 = X3  X2  X1  X0. For the Logisim XOR Gate, the Multiple-Input Behavior attribute needs to be set to “When an odd number are on.”

5. Simulation
After you create your design, use Logisim to simulate the code conversion circuit. You should test all 16 possible input combinations and verify that the correct values of Y3, Y2, Y1, and Y0 are produced and that the correct hexadecimal value is displayed.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Helping Engineer
Assignment Guru
George M.
Top Academic Guru
Coursework Assignment Help
Financial Analyst
Writer Writer Name Offer Chat
Helping Engineer

ONLINE

Helping Engineer

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$41 Chat With Writer
Assignment Guru

ONLINE

Assignment Guru

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$35 Chat With Writer
George M.

ONLINE

George M.

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$18 Chat With Writer
Top Academic Guru

ONLINE

Top Academic Guru

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$48 Chat With Writer
Coursework Assignment Help

ONLINE

Coursework Assignment Help

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$38 Chat With Writer
Financial Analyst

ONLINE

Financial Analyst

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$32 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Monroe motivated sequence example outline - Photostimulable phosphor psp plate - Discussion Post ( Context, Meaning, and Value) - 5 2 study guide and intervention answers - Black bear physiological adaptations - Advantages and disadvantages of r programming language - The anarchy william dalrymple pdf - Wipo dl 101 final exam answers - Scholarly ethics walden university - Homework 2 - Sinorama gold 8 deck plan - Professional nursing leadership and management roles that have arisen - Composition of a letter - Series parallel circuits worksheet two - Glue boiler animal farm - Brian herbert net worth - Alaska airlines mission and vision statement - In using horizontal analysis comparative reports are - Calculate formal charge on each oxygen atom in ozone - Advantages of deficit financing - Harris todaro model graph - Abcd of ethical decision making - The future value of $200 received today and deposited at 8 percent for three years is - WEEK6-ResearchPaper-Data Science & Big Data Analy - Snap on mg1250 review - Characteristics of dystopian novels - Describe creativity in the context of children's services - United airlines guitar scandal - Dr dilis clare thyroid - Heating and cooling curves lab answer key - How to determine if events are mutually exclusive - Elements of art lines - 55mm ring size uk - Percent error formula copy and paste - Financial management chapter 5 time value of money - Mckee v laurion - How many molecules in water - Soft language in psychology - Ozone depletion presentation - Memory - Central asia map labeled - Ceo roles and responsibilities - Pail and shovel party favors - Lyco post driver for sale - Example of behavioral observation report - COURT CASE CJT 202 ASSIGNMENT - Long second toe dominant or recessive - The Application of Data to Problem-Solving - University of nottingham malaysia postcode - Scott rosen solar capital - White house farm medical centre - Conversion cost formula in cost accounting - BUSI510 Week 6 Discussion - 5 callemondah avenue north gosford - The norton reader 12th edition pdf - Erico lightning protection system - Meaning of dog day afternoon - Beaufort wind scale bom - BlockChain and Crypto Currency - Symbolism in book thief - Krispy kreme vision statement - General aviation - Family to family leaving a lasting legacy - Zinc nitrate and copper nitrate galvanic cell - Equilibrium and le chatelier lab answers - Medical surgical skills checklist - SOCW 6361 Wk 11 Discussion 1 - Post Response - Policies and the Influence of Values - Hrm total rewards plan worksheet - Convert differential equation to integral equation - Crow's foot database notation visio 2013 - What does the cathedral symbolize in cathedral by raymond carver - Accounting department in hotel - 2 page - The man who invented management - Distribute rows evenly excel - Types of Supervision Styles - Jb hi fi refurbished phones - ESSAY - Cango competitive analysis - Cow eye dissection lab worksheet - For higher levels of management responsibility accounting reports - Cambridge igcse chemistry workbook answers hodder education - Concrete noun examples in sentences - Kennards hire trinity gardens - Dr stephen fairley gastroenterologist - Medium neutral citation aglc - Cable tray support design calculation - Final Reflection - Why is dibenzalacetone yellow - Classroom observation and teacher interview paper - I love you baltimore - Set m application form - Dummy variable approach forecast sales - Public administration week 8 - Water stands at a depth h in a large - Alloy containing iron crossword - Miercoles - Laureate house wythenshawe hospital - Imagine you work for an independent grocery store with 20 employees. The business owner has tasked you with creating a relational database that will track employee names, IDs, positions (e.g., cashier, manager, clerk, or night crew), and salaries. - Berliner luft drink australia