Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Blackbody curves and ubv filters lab answers

13/11/2020 Client: papadok01 Deadline: 3 days

Name:

NAAP – Blackbody Curves & UBV Filters 1/7

Lab - Blackbody Curves & UBV Filters

Background Material

Thoroughly review the “Spectra” and “Filters” background pages. The color index page may also

be helpful to review. Here the links:

http://astro.unl.edu/naap/blackbody/spectra.html

http://astro.unl.edu/naap/blackbody/filters.html

Filters Simulator Overview

The filters simulator allows one to observe light from various sources passing through multiple

filters and the resulting light that passes through to some detector. An “optical bench” shows the

source, slots for filters, and the detected light. The wavelengths of light involved range from 380

nm to 825 nm which more than encompass the range of wavelengths detected by the human eye.

The upper half of the simulator graphically displays the source-filter-detector process. A graph of

intensity versus wavelength for the source is shown in the leftmost graph. The middle graph

displays the combined filter transmittance – the percentage of light the filters allow to pass for

each wavelength. The rightmost graph displays a graph of intensity versus wavelength for the

light that actually gets through the filter and could travel on to some detector such as your eye or

a CCD. Color swatches at the far left and right demonstrate the effective color of the source and

detector profile respectively.

The lower portion of the simulator contains tools for controlling both the light source and the

filter transmittance.

 In the source panel perform the following actions to gain familiarity.

o Create a blackbody source distribution – the spectrum produced by a light bulb which is a continuous spectrum. Practice using the temperature and peak height

controls to control the source spectrum.

o Create a bell-shaped spectrum. This distribution is symmetric about a peak wavelength. Practice using the peak wavelength, spread, and peak height

controls to vary the source spectrum.

o Practice creating piecewise linear sources. In this mode the user has complete control over the shape of the spectrum as control points can be dragged to any

value of intensity.

 Additional control points are created whenever a piecewise segment is clicked at that location.

 Control points may be deleted by holding down the Delete key and clicking them.

 Control points can be dragged to any location as long as they don’t pass the wavelength value of another control point.

 In the filters panel perform the following actions to gain familiarity.

http://astro.unl.edu/naap/blackbody/spectra.html
http://astro.unl.edu/naap/blackbody/filters.html
NAAP – Blackbody Curves & UBV Filters 2/7

o Review the shapes of the preset filters (the B, V, and R filters) in the filters list. Clicking on them selects them and displays them in the graph in the filters panel.

o Click the add button below the filters list.

 Rename the filter from the default (“filter 4”).

 Shape the piecewise linear function to something other than a flat line.

o Click the add button below the filters list.

 Select bell-shaped from the distribution type pull down menu.

 Alter the features of the default and rename the filter.

o If desired, click the remove button below the filters list. This removes the actively selected filter (can’t remove the preset B, V, and R filters). Filters are not

saved anywhere. Refreshing the flash file deletes the filters.

Click (or copy/paste) here for simulator:

http://astro.unl.edu/naap/blackbody/animations/filters.html

Filters Simulator Questions

 Use the piecewise linear mode of the source panel to create a “flat white light” source at maximum intensity. This source will have all wavelengths with equal intensity.

 Drag the V filter to a slot in the beam path (i.e. place them in the filter rack).

 Try the B and the R filter one at a time as well. Dragging a filter anywhere away from the filter rack will remove it from the beam path.

Sketch the graphs for the flat white light and V filter in the boxes below. What is Question 1:

the effective color of the detected distribution?

With the flat white light source, what is the relationship between the filter Question 2:

transmittance and the detected distribution?

source distribution

combined filter transmittance

detected distribution

http://astro.unl.edu/naap/blackbody/animations/filters.html
NAAP – Blackbody Curves & UBV Filters 3/7

 Add a new piecewise linear filter.

 Adjust the filter so that only large amounts of green light pass. This will require that addition of points.

Use this green filter with the flat white light source and sketch the graphs below. Question 3:

ACME Source FILTER RACK ACME Detector

Use the blackbody option in the source panel to create a blackbody spectrum that Question 4:

mimics white light. What is the temperature of this blackbody you created?

 Add a new piecewise linear filter to the filter list.

 Modify the new filter to create a 40% “neutral density filter”. That is, create a filter which allows approximately 40% of the light to pass through at all wavelengths

(transmittance)

 Set up the simulator so that light from the “blackbody white light” source passes through this filter.

Sketch the graphs created above in the boxes below. (This situation crudely Question 5:

approximates what sunglasses do on a bright summer day.)

Remove all filters in the filters rack. Place a B filter in the beam path with the flat Question 6:

white light source (about 75% intensity). Then add a second B filter and then a third. Describe

and explain what happens when you add more than one of a specific filter.

source distribution

combined filter transmittance

detected distribution

source distribution

combined filter transmittance

detected distribution

NAAP – Blackbody Curves & UBV Filters 4/7

Place a B filter in the beam path together with the 40% neutral density filter. Then Question 7:

add a V filter into the beam path. Describe and explain what happens when you add more than

one filter to the filter rack.

Create a piecewise linear filter that when used with the Question 8:

flat white light source would allow red and blue wavelengths to pass

and thus effectively allowing purple light to pass. Draw the filter in

the box to the right.

FILTER RACK

 Remove all filters from the filters rack.

 Create a very narrow bell-shaped source distribution that is peaked at green wavelengths (somewhere close to 550 nm). Notice the color!

 Expand the spread of the source distribution to maximum. Notice how the color changes.

 Change the distribution source to a blackbody source peaked at green wavelengths (a temperature close to 5270 K). Again notice the color.

Using observations from the above actions, explain why we don’t observe “green Question 9:

stars” in nature, though there are indeed stars which emit more green light than other

wavelengths.

Close your applet. We are going to the next level, ready?

purple filter profile

NAAP – Blackbody Curves & UBV Filters 5/7

Blackbody – Curves Mode Familiarization

The Blackbody Curve Simulator has two main modes – the curves mode and the filters mode.

The curves mode allows the exploration of blackbody curves including their peak wavelength

and the area under the curve which is related to their total energy production.

 Learn how to add and remove curves and change their temperatures.

o Click the add curve button one or more times.

o Change the temperature slider. Notice which curve changes.

o Select a second curve and change temperature.

o Remove all but 1 or 2 extra curves.

 Learn the vertical scale options. Have 2 or 3 curves in the explorer.

o Change temperature with the auto scale all curves mode.

o Change temperature with the auto scale to selected curve mode.

o Change temperature with the lock scales mode.

 Learn the horizontal scale options. Select the horizontal scale tab.

o Note how changing the rightmost limit changes the view.

 Use, if desired, the indicate peak wavelength and highlight area under curve options.

Here the link:

http://media.wwnorton.com/college/astronomy/animations/interactive/bbexplorer.html

Create a blackbody curve of temperature Question 10:

6000 K and draw the shape in the box to the right.

Does it have a peak? Is it symmetric about this peak?

______

__________________________________________

Create a second curve using the add curve button and use the temperature slider to Question 11:

vary its temperature, chose one with 7000 K then move down to 5000 K. Can you find a

blackbody curve of another temperature that intersects the 6000 K curve at some wavelength?

________________________________________________________________________

http://media.wwnorton.com/college/astronomy/animations/interactive/bbexplorer.html
NAAP – Blackbody Curves & UBV Filters 6/7

Make sure that there is only one curve and check indicate peak wavelength. Vary Question 12:

the temperature of the curve and note how the peak wavelength changes. Formulate a general

statement relating the peak wavelength to temperature. Then compare this statement with Wien’s

Law discussed in your textbook.

____ _ ______

Select the highlight area under curve option and lock the vertical scale. Vary the Question 13:

temperature of the curve and note how the area under the curve changes. Formulate a general

statement relating the area under curve to temperature.

(Calculator Required) Complete the following table below. The “Area Ratio” is Question 14:

the area for the curve divided by the area for the curve in the row above. This will tell you many

times greater the new ratio is compared to the previous one.

Can you specify a more precise statement relating the area under curve to temperature? Is this

consistent with what was referred to as the Stefan-Boltzmann Law in the background pages?

Curve Temperature Area Under Curve (W/m 2 ) Area Ratio

3000 K

6000 K

12000 K

24000 K

NAAP – Blackbody Curves & UBV Filters 7/7

Blackbody Explorer – Filters Mode

The second mode is the filters mode and explores the use of UBVR filters with blackbody

curves.

 Unselect highlight area under curve and indicate peak wavelength. Select the filters tab.

The light from a blackbody curve that passes through the UBVR filters are shown as colored

areas under the curve. It is this area which is later translated into a number for color magnitude.

Remember that a magnitude is a logarithmic version of the flux (i.e. the amount of light) that

passes through a filter and that lower numbers reflect larger fluxes. Note that this area depends

on both the source and the filter. What is listed as a V value is the apparent magnitude of a star

(assumed to blackbody which isn’t exactly true) through the V filter.

Vary the temperature and in the table to the right Question 15:

note the temperature in at which each filter peaks. Where are

the filters most sensitive, i.e. which temperature will give the

strongest response in a detector?

__________________________________________________

__________________________________________________

__________________________________________________

Use the color index feature to create a B-V index. This will compare the apparent Question 16:

magnitude of a star through the B filter to that through the V filter. Plot temperature on the

vertical axis and B-V on the horizontal.

Temperature B-V

3000 K

4000 K

5000 K

6000 K

8000 K

10,000 K

15,000 K

20,000 K

25,000 K

Use your graph to estimate the B-V value of a 12,000 K blackbody: ___________ Question 17:

Curve Peak Temperature

U

B

V

R

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Buy Coursework Help
Quality Homework Helper
Ideas & Innovations
Writer Writer Name Offer Chat
Buy Coursework Help

ONLINE

Buy Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$62 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

Hi dear, I am ready to do your homework in a reasonable price.

$62 Chat With Writer
Ideas & Innovations

ONLINE

Ideas & Innovations

Hi, Hope you are doing well. I can do this easily because I have several experiences to write articles on different web sites, creative content for several blogs & also SEO writing. Even I have written many kindle ebooks, Being a creative writer, I think I am the most eligible person for your Ghostwriting project. So lets make no longer delay & start chatting immediately.

$60 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Commerce law monash course map - Parliamentary education office website - Need 5+ pages with no plagiarism and 2+ scholarly references in APA7 Format - You can grow your intelligence - Sociology - Types of sponsorship in sport - Allstate bringing mayhem to the auto insurance advertising wars - What is metadata which component of a dbms maintains metadata - Autodesk inventor icons list - Ben cade estate agent - D3 - Business law answers to questions and case problems - Anybody's son will do - Organizational Communication - 3 2x 5 27 - Medical cover letter template - Sheriff hutton jumble sale - Types of plastics used in electronics - 3 prescriptions of personal selling philosophy - Asalamalakim meaning - Master of disguise jaws quote - My body Politic - When were fiber optic cables invented - Utilitarianism chapter 2 - 93 pacey road upper brookfield - Final report 7 pages due by 24 hours - Adolescence: Contemporary Issues and Resources - Does air weigh anything - What you pawn i will redeem discussion questions - Louder with crowder wage gap - Increases air turbulence in the nasal cavity - Inventory Management - Dyson distribution and supply chain strategy - Calculating iv flow rate ml hr - Super troopers german techno scene - Holden outerwear promotes innovation at the individual employee level by - Need Thursday by 8:30pm est Atomic Theory Choice Board - Church of the resurrection killarney mass times - Yonec marie de france summary - How to make an outline for a speech class - Exploratory essay topics about music - 601/8 dorcas street south melbourne - The curious researcher 9th edition chapter 1 pdf - Ballroom dancing lessons brisbane - Mn h2o 6 2 high or low spin - 6318 mccartney ln garland tx 75043 - HIST 131 - In 1905 homework was invented for what reason - Information Systems - Dulux kitchen paint problems - Barron knights bohemian rhapsody - Determination of water hardness by edta titration calculations - Kim woods - Spark plug heat range chart - Cengage accounting chapter 2 homework answers - Frankenstein chapter 12 questions and answers mississippi item sampler - William dawes midnight ride - What is bx(0,0), the x-component of the magnetic field produced by these three wires at the origin? - Unit 5 Assignment - W8D1 - C11E Assignment 8 - What is a positively charged ion - Gartner magic quadrant for security awareness computer-based training - Brondecon cough mixture australia - Test case design techniques guru99 - Autocad 2015 3d tutorial - Fluid Balance - House purchase grant wandsworth - Empire comparing thesis - Value line publishing home depot lowes - Allied merchandisers was organized on may - Negative news letter business - Hypothesis & Variables - Legal and Ethical Considerations for Group and Family Therapy - Respond to both discussions due today - Engineering - The practice of statistics 3rd edition chapter 1 answer key - How to cultivate pineapple in sri lanka - Mary and company operating in a monopolistically competitive industry - Some recent financial statements for smolira golf corp follow - Spiritual needs assessment interview questions - View of Human Resource Development - Finance - Freight car loadings over a 12 - What does the hyena represent in life of pi - Producers use marketing intermediaries because they - 3 - 4 paragraph discussion - History 101 histrory of american civilization 1 - All horses are the same color - Lección 7 | grammar quiz - Media literacy 9th edition potter pdf free - Ammonium hydroxide base or acid - 43 yallambee road jindalee - He Giver and answer the following questions - Ethics in animal research ppt - Amc assignment cover sheet - Joint commission root cause analysis template - Discussion 2 ,250 words add references and citations by 08/20/20 at 6:00 pm,Reply 1 and 2 150 words each one ,add references and citations by 08/20/20 at 8:00 pm - Coir log suppliers brisbane - Builds productive relationships selection criteria