Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Calculate the effectiveness of the heat exchanger in problem 6

19/11/2021 Client: muhammad11 Deadline: 2 Day

Heat Transfer HW

Fundamentals of Heat and Mass Transfer, Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, John Wiley & Sons, Inc.

•Chapter 1: Introduction

Conduction Heat Transfer •Chapter 2: Introduction to Conduction •Chapter 3: 1D, Steady-State Conduction •Chapter 4: 2D, Steady-State Conduction •Chapter 5: Transient Conduction

Convection Heat Transfer •Chapter 6: Introduction to Convection •Chapter 7: External Flow •Chapter 8: Internal Flow •Chapter 9: Free Convection •Chapter 10: Boiling and Condensation •Chapter 11: Heat Exchangers

Radiation Heat Transfer •Chapter 12: Radiation Processes and Properties •Chapter 13: Radiation Exchange Between Surfaces

1 Mass Transfer

•Chapter 14: Diffusion Mass Transfer

Chapter-11

(Heat Exchangers)

2

Chapter-11: Heat Exchangers

3

11.1 Heat Exchanger Types 11.2 The Overall Heat Transfer Coefficient

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference

11.3.1 The Parallel-Flow Heat Exchanger 11.3.2 The Counterflow Heat Exchanger 11.3.3 Special Operating Conditions

11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method

11.4.1 Definitions

11.4.2 Effectiveness–NTU Relations 11.5 Heat Exchanger Design and Performance Calculations 11.6 Additional Considerations

11.7 Summary

Heat Exchanger Types

Heat exchangers are ubiquitous in energy conversion and utilization. They involve heat exchange between two fluids separated by a solid and encompass a wide range of flow configurations.

• Concentric-Tube Heat Exchangers

Parallel Flow Counterf low

Ø Simplest configuration. Ø Superior performance associated with counter flow.

Cross-flow Heat Exchangers

Finned-Both Fluids Unmixed

Unfinned-One Fluid Mixed the Other Unmixed

Ø For cross-flow over the tubes, fluid motion, and hence mixing,

in the transverse direction (y) is prevented for the finned tubes, but occurs for the unfinned condition.

Ø Heat exchanger performance is influenced by mixing.

Shell-and-Tube Heat Exchangers

One Shell Pass and One Tube Pass

Ø Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection.

Ø The number of tube and shell passes may be varied, e.g.:

One Shell Pass, Two Tube Passes

Two Shell Passes, Four Tube Passes

Compact Heat Exchangers

Ø Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas.

Ø Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow.

(a) Fin-tube (flat tubes, continuous plate fins) (b) Fin-tube (circular tubes, continuous plate fins) (c) Fin-tube (circular tubes, circular fins) (d) Plate-fin (single pass) (e) Plate-fin (multipass)

Overall Heat Transfer Coefficient (1/2)

• An essential requirement for heat exchanger design or performance calculations.

• Contributing factors include convection and conduction associated with the two fluids and the intermediate solid, as well as the potential use of fins on both sides and the effects of time- dependent surface fouling. • With subscripts c and h used to designate the cold and hot fluids, respectively, the most general expression for the overall coefficient is:

Overall Heat Transfer Coefficient (2/2)

Ø

→ Table 11.1

Ø

Assuming an adiabatic tip, the fin efficiency is

Ø

A Methodology for Heat Exchanger Design Calculations (Log Mean Temperature Difference (LMTD) Method)

• A form of Newton’s law of cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids:

ΔT = ΔT

1 − ΔT2

l m 1n (ΔT1 / ΔT2 )

Evaluation of depends on the heat exchanger type.

• Counter-Flow Heat Exchanger:

ΔT ≡ T − T 1 h ,1 c,1

= T

h ,i −

T

c ,o

ΔT ≡ T − T 2 h ,2 c,2

= T

h ,o −

T

c ,i

Parallel-Flow HeatΔT1≡Th,1− TExchangerc,1

= T

h ,i −

T

c ,i

Ø Note that Tc,o cannot exceed Th,o for a PF HX, but can do so for a CF HX.

Ø For equivalent values of UA and inlet temperatures,

• Shell-and-Tube and Cross-Flow Heat Exchangers:

Overall Energy Balance

• Application to the hot (h) and cold (c) fluids:

• Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid.

• Assuming no l/v phase change and constant specific heats,

Special Operating Conditions

Ø Case (a): Ch>>Cc or h is a condensing vapor – Negligible or no change in Th (Th,o=Th,i)

Ø Case (b): Cc>>Ch or c is an evaporating liquid

– Negligible or no change in Tc (Tc,o=Tc,i) Ø Case (c): Ch=Cc.

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (1/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (2/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (3/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (4/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (5/5)

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (1/3)

SCHEMATIC:

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (2/3)

<

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (3/3)

<

General Considerations

• Computational Features/Limitations of the LMTD Method:

The LMTD method may be applied to design problems for which the fluid flow rates and inlet temperatures, as well as a desired outlet temperature, are prescribed. For a specified HX type, the required size (surface area), as well as the other outlet temperature, are readily determined.

Ø If the LMTD method is used in performance calculations for which both outlet temperatures must be determined from knowledge of the inlet temperatures, the solution procedure is iterative.

Ø For both design and performance calculations, the effectiveness-NTU method may be used without iteration.

Definitions (1/2)

• Heat exchanger effectiveness, : • Maximum possible heat rate: Ø Will the fluid characterized by Cmin or Cmax experience the largest possible temperature change in transit through the HX?

Ø Why is Cmin and not Cmax used in the definition of qmax?

Definitions (2/2)

• Number of Transfer Units, NTU

Ø A dimensionless parameter whose magnitude influences HX performance:

Heat Exchanger Relations (1/2)

q = ε Cmin (Th , i −Tc ,i ) • Performance Calculations: Ø

Cr Ø

Heat Exchanger Relations (2/2)

Design Calculations:

ε ↑ with ↓ Cr Ø Ø

• For all heat exchangers,

ε = 1 − exp (−NTU)

• For Cr

= 0, a single

or

relation applies to all HX types.

NTU = −1n (1 − ε )

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (1/5)

SCHEMATIC:

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (2/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (3/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (4/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (5/5)

and from Eq. (1) the effectiveness is

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure. (1/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure.(2/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio-pulmonary bypass procedure. (3/3)

Suggested Problems to Practice

•Example Problem: 11.1 (Page-716) to 11.8 (Page-742) •Exercise Problem: 11.1 (Page-748) to 11.94 (Page-765) •Derive equation 11.14 showing all the steps to find total heat transfer for parallel flow heat exchanger. Apply the same concept for counter- flow heat exchanger. •Derive equation 11.28a showing all the steps to find relation between heat exchanger effectiveness and NTU.

35

Homework-5

§Solve all the example problems (11.1 to 11.8) from the text book from this Chapter- 11 §Solve all the exercise problems (11.5, 11.35, 11.39, and 11.54) mentioned in the slides from this Chapter-11 §Show all the steps (Given, Find, Assumptions, Solve, hand drawings etc.) to give impression that you understood the problem §Write all the necessary equations applied to those problems

§Due by Tuesday 7/31 by 8pm §You can submit the homework early, if you want §Write your solved problems, scan all the pages as one pdf §Please use the file name for attachment as: 'HW-5-Your First and Last name' .

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Financial Assignments
Writing Factory
Calculation Master
Essay & Assignment Help
Buy Coursework Help
Solution Provider
Writer Writer Name Offer Chat
Financial Assignments

ONLINE

Financial Assignments

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$37 Chat With Writer
Writing Factory

ONLINE

Writing Factory

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$22 Chat With Writer
Calculation Master

ONLINE

Calculation Master

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$30 Chat With Writer
Essay & Assignment Help

ONLINE

Essay & Assignment Help

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$46 Chat With Writer
Buy Coursework Help

ONLINE

Buy Coursework Help

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$23 Chat With Writer
Solution Provider

ONLINE

Solution Provider

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$40 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Pharmacare we care about your health - Australian tax tables weekly - PMO Assessment for Advancement Essay - Projection Management - 5 Pages - No Extension - The limes surgery hoddesdon - Module 7 - Lecture Questions - Ethernet wire color order - Yellow river chinese school homework - Who's the spy for the greasers - Is the american dream over? - Analysis - Proof variance of geometric distribution - Reflection paper on business continuity and disaster recovery plan. - Information Systems - Preparation of 0.1 m sodium thiosulphate - Tom swift said it this way supposedly math answers - Biology-VI - Classics of organizational behavior pdf - Information systems infrastructure evolution and trends articles - Calculate a forecast using a simple three month moving average - Ieee conference template a4 latex - In this unit you will submit your final research paper - D fructose ir spectrum - Set of Instructions for a Website - 7.4 human genetics and pedigrees power notes answers - Questions on rhetoric and style letter from birmingham jail - Eylf planning cycle acecqa - Multi step flow theory of mass communication - Hp 61 black ink cartridge walgreens - Father o leary's velvet cream - Assignment - Supply chain network design decisions - Addiction services york region - When do jeremy and bonnie break up - Is a greyhound faster than a horse - What are four common types of changes and trends - Rituals - How to turn an improper fraction into a mixed fraction - Sace stage 2 legal studies textbook - Religion: good or bad for society? - Godmen of india peter brent pdf - Does anyone know about this? - Student engagement strategies powerpoint gcu - Report for experiment 23 neutralization titration ii - Atomic habits cheat sheet - Classical conditioning theory in consumer behaviour - Fish roe is permitted to have amaranth added to it - Hog bristle half colour schemes - Devry coll 148 - Week 8 lessons 3 - Helmet manufacturing plant cost - Surelock mcgill panic bar - NEED IN 15 HOURS or LESS - Quickdatabasediagrams - Impact of digitalisation on banking sector - Your competitive intelligence team is predicting that the - What cultural conflicts emerged in the 1990s - Green eggs and ham rhyme scheme - Network infrastructure work breakdown structure - Change management policy document - Spsp homework - Well house manor melksham - The future of nursing institute of medicine - Battery isolator switch jaycar - Bfi film festival submissions - Course Project: Argumentative Paper - Explain a scenario where you or someone you know may have unknowingly given too much personal information to a stranger. How could this situation been avoided? - How do readmission rates affect inpatient revenue - Psychology - CASE STUDY - WEEK II PART1 - Webugol - Discussion - What is reducing balance method of depreciation - Critical thinking and the process of evidence based practice - Inside russia's toughest prisons watch online - IT Dissertation - Report Writing - Narratives that shape our world othello - Discussion - Service management process ppt - Leadership Questions - Game theory player jacket with thumb holes - Sample letter request for honorarium - Nc rules for writers launchpad custom 9th edition - Anatomy and physiology 2 - 175 bus route brisbane - Organelles and illness activity case - MGMT335 Unit 3 Memo - Www hp com go mobileprintingwww hp com go mobileprintingwww hp com go mobileprinting - Case Study for Marketing New Product Strategy - Buzzfeed the promise of native advertising - Ge load center catalog - 4.4 evaluate procedures for working with others - Mcdonalds resource based view analysis - Pastina company sells various types of pasta to grocery - Week 6 - Colin turner risale i nur - Blue mountains train timetable - Which is a characteristic of popular culture - External research and analysis for the given company