Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Concentration gradients and membrane permeability lab answers

13/11/2020 Client: papadok01 Deadline: 24 Hours

Experiment 2: Concentration Gradients and Membrane Permeability

In this experiment, you will dialyze a solution of glucose and starch to observe:

The directional movement of glucose and starch.
The effect of a selectively permeable membrane on the diffusion of these molecules.
An indicator is a substance that changes color when in the presence of a specific substance. In this experiment, IKI will be used as an indicator to test for the presence of starch.

Materials

(5) 100 mL Beakers
10 mL 1% Glucose Solution, C6H12O6
4 Glucose Test Strips
(1) 100 mL Graduated Cylinder
4 mL 1% Iodine-Potassium Iodide, IKI
5 mL Liquid Starch, C6H10O5
3 Pipettes
4 Rubber Bands (Small; contain latex, handle with gloves on if allergic)

Permanent Marker
*Stopwatch
*Water
*Scissors

*15.0 cm Dialysis Tubing

*You Must Provide
*Be sure to measure and cut only the length you need for this experiment. Reserve the remainder for later experiments.

Attention!

Do not allow the open end of the dialysis tubing to fall into the beaker. If it does, remove the tube and rinse thoroughly with water before refilling it with the starch/glucose solution and replacing it in the beaker.

Note:

If you make a mistake, the dialysis tubing can be rinsed and used again.

Dialysis tubing must be soaked in water before you will be able to open it up to create the dialysis “bag.” Follow these directions for this experiment:

1. Soak the tubing in a beaker of water for ten minutes.

2. Place the dialysis tubing between your thumb and forefinger, and rub the two digits together in a shearing manner. This motion should open up the “tube” so that you can fill it with the different solutions.

Procedure

1. Measure and pour 50 mL of water into a 100 mL beaker using the 100 mL graduated cylinder. Cut a piece of dialysis tubing 15.0 cm long. Submerge the dialysis tubing in the water for at least ten minutes.

2. Measure and pour 82 mL of water into a second 100 mL beaker using the 100 mL graduated cylinder. This is the beaker you will put the filled dialysis bag into in Step 9.

3. Make the glucose/sucrose mixture. Use a graduated pipette to add 5 mL of glucose solution to a third 100 mL beaker and label it “dialysis bag solution.” Use a different graduated pipette to add 5 mL of starch solution to the same beaker. Mix by pipetting the solution up and down six times.

4. Using the same pipette that you used to mix the dialysis bag solution, remove 2 mL of the dialysis bag solution and place it in a clean beaker. This sample will serve as your positive control for glucose and starch.

a. Dip one of the glucose test strips into the 2 mL of glucose/starch solution in the third beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your positive control for glucose.

b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL of glucose/starch solution into the third beaker. After one minute has passed, record the final color of the glucose/starch solution in the beaker in Table 3. This is your positive control for starch.

5. Using a clean pipette, remove 2 mL of water from the 82 mL of water you placed in a beaker in Step 2, and place it in a clean beaker. This sample will serve as your negative controls for glucose and starch.

a. Dip one of the glucose test strips into the 2 mL of water in the beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your negative control for glucose.

b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL in the beaker. After one minute has passed, record the final color of the water in the beaker in Table 3. This is your negative control for starch.

Note:The color results of these controls determine the indicator reagent key. You must use these results to interpret the rest of your results.

6. After at least ten minutes have passed, remove the dialysis tube and close one end by folding over 3.0 cm of one end (bottom). Fold it again and secure with a rubber band (use two rubber bands if necessary).

7. Test to make sure the closed end of the dialysis tube will not allow solution to leak out. Dry off the outside of the dialysis tube bag with a cloth or paper towel. Then, add a small amount of water to the bag and examine the rubber band seal for leakage. Be sure to remove the water from the inside of the bag before continuing.

Using the same pipette that was used to mix the solution in Step 3, transfer 8 mL of the dialysis bag solution to the prepared dialysis bag.
Figure 4: Step 9 reference.

Figure 4:Step 9 reference.

9. Place the filled dialysis bag in the 100 mL beaker filled with 80 mL of water, leaving the open end draped over the edge of the beaker as shown in Figure 4.

10.Allow the solution to sit for 60 minutes. Clean and dry all materials except the beaker holding the dialysis bag.

11.After the solution has diffused for 60 minutes, remove the dialysis bag from the beaker and empty the contents of the bag into a clean, dry beaker. Label the beaker “final dialysis bag solution.”

12.Test the final dialysis bag solution for the presence of glucose by dipping one glucose test strip into the dialysis bag. Wait one minute before reading the results of the test strip. Record your results for the presence of glucose in Table 4.

13.Test for the presence of starch by adding 2 mL IKI. After one minute has passed, record the final color in Table 4.

14.Use a pipette to transfer 8 mL of the water in the beaker to a clean beaker. Test the beaker water for the presence of glucose by dipping one glucose test strip into the beaker. Wait one minute before reading the results of the test strip, and record the results in Table 4.

15.Test for the presence of starch by adding 2 mL of IKI to the beaker water. Record the final color of the beaker solution in Table 4.

Table 3: Indicator Reagent Data

Indicator

Starch Positive
Control (Color)

Starch Negative
Control (Color)

Glucose Positive
Control (Color)

Glucose Negative
Control (Color)

Glucose Test Strip

n/a

n/a

IKI Solution

n/a

n/a

Table 4: Diffusion of Starch and Glucose Over Time

Indicator

Dialysis Bag After 60 Minutes

Beaker Water After 60 Minutes

IKI Solution

Glucose Test Strip

Post-Lab Questions

1. Why is it necessary to have positive and negative controls in this experiment?

2. Draw a diagram of the experimental set-up. Use arrows to depict the movement of each substance in the dialysis bag and the beaker.

3. Which substance(s) crossed the dialysis membrane? Support your response with data-based evidence.

4. Which molecules remained inside of the dialysis bag?

5. Did all of the molecules diffuse out of the bag into the beaker? Why or why not?

Experiment 1: Diffusion through a Liquid

In this experiment, you will observe the effect that different molecular weights have on the ability of dye to travel through a viscous medium.

Materials

1 60 mL Corn Syrup Bottle, C12H22O11
Red and Blue Dye Solutions (Blue molecular weight = 793 g/mole; red molecular weight = 496 g/mole)
(1) 9 cm Petri Dish (top and bottom halves)

Ruler
*Stopwatch
*Clear Tape

*You Must Provide



Procedure

1. Use clear tape to secure one-half of the petri dish (either the bottom or the top half) over a ruler. Make sure that you can read the measurement markings on the ruler through the petri dish. The dish should be positioned with the open end of the dish facing upwards.

Carefully fill the half of the petri dish with corn syrup until the entire surface is covered.
Develop a hypothesis regarding which color dye you believe will diffuse faster across the corn syrup and why. Record this in the post-lab questions.
Place a single drop of blue dye in the middle of the corn syrup. Note the position where the dye fell by reading the location of its outside edge on the ruler.
Record the location of the outside edge of the dye (the distance it has traveled) every ten seconds for a total of two minutes. Record your data in Table 1 and use your results to perform the calculations in Table 2.
Repeat the procedure using the red dye, the unused half of the petri dish, and fresh corn syrup.

Table 1: Rate of Diffusion in Corn Syrup

Time (sec)

Blue Dye

Red Dye

Time (sec)

Blue Dye

Red Dye

10

70

20

80

30

90

40

100

50

110

60

120

Table 2: Speed of Diffusion of Different Molecular Weight Dyes

Structure

Molecular Weight

Total Distance
Traveled (mm)

Speed of Diffusion
(mm/hr)*

Blue Dye

Red Dye

*Multiply the total distance diffused by 30 to get the hourly diffusion rate

Post-Lab Questions

Record your hypothesis from Step 3 here. Be sure to validate your predictions with scientific reasoning.

Which dye diffused the fastest?

Does the rate of diffusion correspond with the molecular weight of the dye?

Does the rate of diffusion change over time? Why or why not?

Examine the graph below. Does it match the data you recorded in Table 2? Explain why, or why not. Submit your own plot if necessary.

https://nuonline.neu.edu/bbcswebdav/pid-9451339-dt-content-rid-14232100_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s001.html

https://nuonline.neu.edu/bbcswebdav/pid-9451340-dt-content-rid-14232401_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s002.html

https://nuonline.neu.edu/bbcswebdav/pid-9451341-dt-content-rid-14232402_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s003.html

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Writer Writer Name Offer Chat

Writers are writing their proposals. Just wait here to get the offers for your project...

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Lesson 8.6 anyway you slice it worksheet answers - Family trainer wii download - Calculate patient acuity - Queen elizabeth i's speech to the troops at tilbury 1588 - Calcium channel blockers osmosis - Pryce butler real estate - Introduction to science exercise 1 data interpretation - Bbc languages spanish games - Why can't two species occupy the same niche - 324 ne 12th st grand prairie tx - The wave chapter 17 - Deckers outdoor corporation investor relations - Virtual desktop truman state - Usq late assignment policy - Quine truth by convention - Which promotional activity will sell the most products - Research Paper Big Data and Business Intelligence - Om shreem brzee namaha benefits - How many prada stores worldwide - Purpose of monitoring inspections - Try square tool definition - Caleb invested 9200 in a savings account - What did ed snowden do to break the law - Highlight construction company income statement - Stat 201 help - What pricing strategy does bentley motors use - Warehouse stationery office chairs - The culturally encapsulated counselor is characterized by - Addition properties and subtraction rules - Queensland plumbing and wastewater code - Person environment occupation model - Griffith university late submission - Geo 3030 - Budgets normally cover a period of: - Target from expect more to pay less case study answers - Top yogh yaught - Rate of reaction practical report - Instruments in the percussion family - Alice programming lesson plans - How to write radio script format - Tealiki carreira - Uts autumn 2021 results - Mext scholarship 2016 results - Discussion Questions - Radio shack continuity tester - 978 1 259 73278 2 - Merinda park learning and community centre - Fidji perfume chemist warehouse - Strategic perspective of compensation - How to calculate case mix index for ms drg - Global business today 10e hill & hult mcgraw hill 2018 - Who wrote empire of the summer moon - Suffragist carrie chapman ___ nyt crossword - Tasso elba milled slim billfold wallet - Boo radley to kill a mockingbird character traits - Pacific trails resort chapter 8 code - The slant height of a cone is increased by 10 - An airline manufacturer incurred the following costs last month (in thousands of dollars): - Assignment: Asthma and Stepwise Management Advanced (Pharmacology-WK3) - CRIMINAL JUSTICE - What does learning agility mean - Jones and harris 1967 - Electricity transfer application form - Perdue farms case study - Cooperative bank privilege premier travel insurance - Jonas and kovner 11th edition pdf - Watch pan's labyrinth hulu - Health Information Management System Week 5 Project - Central limit theorem ti 83 - Download Your Favorite Free Ringtones - Business - Stevie hogan west ham - Big skinny case study - Executive summary capstone project - Clarence darrow a plea for mercy - Stripe auditorium winchester university - Down syndrome family network - 5 axioms of communication gamble and gamble - MARKET STRUCTURE AND GAME THEORY - Ethical scenario - Ltcl piano repertoire list - Malu kangaroo teacher notes - Organizational communication - Write one paper each Qualitative and quantitative research reviews - Southwest airlines human resources strategy - Brandon bays the journey worksheets - Are metals good insulators - Eat sleep man woman - Why is breakfast the most important meal of the day speech - James and the giant peach book characters - Hank b marvin net worth - Antique white usa colour combination - Rutgers criminal justice major - Horstmann h27xl series 2 wiring diagram - 4 bit comparator verilog code - Tom trusock cause of death - Advantages of internal fertilization - Uses of histogram in daily life - Forum 3 - Mha/520