FOURTH EDITION
NURSING INFORMATICS and the Foundation of Knowledge
The Pedagogy Nursing Informatics and the Foundation of Knowledge, Fourth Edition drives comprehension through a variety of strategies geared toward meeting the learning needs of students, while also generating enthusiasm about the topic. This interactive approach addresses diverse learning styles, making this the ideal text to ensure mastery of key concepts. The pedagogical aids that appear in most chapters include the following:
Key Terms » Accessibility » Cognitive activity » Data » Data gatherer » Enumerative
approach » Expert systems
» Industrial Age » Information » Information Age » Information user » International
Classification of Nursing Practice
» Knowledge » Knowledge
builder » Knowledge user » Knowledge worker » Ontological
approach
» Reusability » Standardized Nurs-
ing Terminology » Technologist » Terminology » Ubiquity » Wisdom
1. Trace the evolution of nursing informatics from concept to specialty practice.
2. Relate nursing informatics metastructures, con- cepts, and tools to the knowledge work of nursing.
3. Explore the quest for consistent terminology in nursing and describe terminology approaches that
accurately capture and codify the contributions of nursing to health care.
4. Explore the concept of nurses as knowledge workers.
5. Explore how nurses can create and derive clinical knowledge from information systems.
Objectives
9781284122688_CH06.indd 104 16/12/16 5:56 PM
Introduction Those who followed the actual events of Apollo 13, or who were enter- tained by the movie (Howard, 1995), watched the astronauts strive against all odds to bring their crippled spaceship back to Earth. The speed of their travel was incomprehensible to most viewers, and the task of bringing the spaceship back to Earth seemed nearly impossible. They were experienc- ing a crisis never imagined by the experts at NASA, and they made up their survival plan moment by moment. What brought them back to Earth safely? Surely, credit must be given to the technology and the spaceship’s ability to withstand the trauma it experienced. Most amazing, however, were the traditional nontechnological tools, skills, and supplies that were used in new and different ways to stabilize the spacecraft’s environment and keep the astronauts safe while traveling toward their uncertain future.
This sense of constancy in the midst of change serves to stabilize experi- ence in many different life events and contributes to the survival of crisis and change. This rhythmic process is also vital to the healthcare system’s stability and survival in the presence of the rapidly changing events of the Knowledge Age. No one can dispute the fact that the Knowledge Age is changing health care in ways that will not be fully recognized and under- stood for years. The change is paradigmatic, and every expert who ad- dresses this change reminds healthcare professionals of the need to go with the fl ow of rapid change or be left behind.
As with any paradigm shift, a new way of viewing the world brings with it some of the enduring values of the previous worldview. As health care continues its journey into digital communications, telehealth, and wearable technologies, it brings some familiar tools and skills recognized in the form of values, such as privacy, confi dentiality, autonomy, and nonma- lefi cence. Although these basic values remain unchanged, the standards for living out these values will take on new meaning as health professionals confront new and different moral dilemmas brought on by the adoption
Ethical applications of Informatics Dee McGonigle, Kathleen Mastrian, and Nedra Farcus
77
ChapTEr 5
9781284122688_CH05.indd 77 16/12/16 5:52 PM
Key Terms Found in a list at the beginning of each chapter, studying these terms will create an expanded vocabulary.
Objectives Providing a snapshot of the key information encountered in each chapter, the objectives serve as a checklist to help guide and focus study. Objectives can also be found within the text’s online resources.
Introductions Found at the beginning of each chapter, the introductions provide an overview highlighting the importance of the chapter’s topic. They also help keep students focused as they read.
Key Terms » Artificial
intelligence » Brain » Cognitive
informatics » Cognitive science » Computer science
» Connectionism » Decision making » Empiricism » Epistemology » Human Mental
Workload (MWL) » Intelligence
» Intuition » Knowledge » Logic » Memory » Mind » Neuroscience » Perception
» Problem solving » Psychology » Rationalism » Reasoning » Wisdom
1. Describe cognitive science. 2. Assess how the human mind processes and gener-
ates information and knowledge.
3. Explore cognitive informatics. 4. Examine artificial intelligence and its relationship
to cognitive science and computer science.
Objectives
9781284122688_CH04.indd 64 16/12/16 5:46 PM
Summaries Summaries are included at the end of each chapter to provide a concise review of the material covered, highlighting the most important points and describing what the future holds.
uncertainty to the situational factors and personal beliefs that must be considered cre- ates a need for an ethical decision-making model to help one choose the best action.
Ethical Decision Making Ethical decision making refers to the process of making informed choices about ethical dilemmas based on a set of standards differentiating right from wrong. This type of decision making reflects an understanding of the principles and standards of ethical decision making, as well as the philosophic approaches to ethical decision making, and it requires a systematic framework for addressing the complex and often contro- versial moral questions.
As the high-speed era of digital communications evolves, the rights and the needs of individuals and groups will be of the utmost concern to all healthcare profession- als. The changing meaning of communication, for example, will bring with it new concerns among healthcare professionals about protecting patients’ rights of confi- dentiality, privacy, and autonomy. Systematic and flexible ethical decision-making abilities will be essential for all healthcare professionals.
Notably, the concept of nonmaleficence (“do no harm”) will be broadened to include those individuals and groups whom one may never see in person, but with whom one will enter into a professional relationship of trust and care. Mack (2000)
82 ChapTEr 5 Ethical Applications of Informatics
rESEarCh BrIEF
Using an online survey of 1,227 randomly selected respondents, Bodkin and Miaoulis (2007) sought to describe the characteristics of information seekers on e-health websites, the types of information they seek, and their perceptions of the quality and ethics of the websites. Of the respondents, 74% had sought health in- formation on the Web, with women accounting for 55.8% of the health informa- tion seekers. A total of 50% of the seekers were between 35 and 54 years of age. Nearly two thirds of the users began their searches using a general search engine rather than a health-specific site, unless they were seeking information related to symptoms or diseases. Top reasons for seeking information were related to dis- eases or symptoms of medical conditions, medication information, health news, health insurance, locating a doctor, and Medicare or Medicaid information. The level of education of information seekers was related to the ratings of website quality, in that more educated seekers found health information websites more understandable, but were more likely to perceive bias in the website information. The researchers also found that the ethical codes for e-health websites seem to be increasing consumers’ trust in the safety and quality of information found on the Web, but that most consumers are not comfortable purchasing health products or services online.
The full article appears in Bodkin, C., & Miaoulis, G. (2007). eHealth information quality and ethics issues: An exploratory study of consumer perceptions. International Journal of Pharmaceuti- cal and Healthcare Marketing, 1(1), 27–42. Retrieved from ABI/INFORM Global (Document ID: 1515583081).
9781284122688_CH05.indd 82 16/12/16 5:52 PM
practices are sometimes more harmful than beneficial). A case in point is the long-standing practice of instilling endotracheal tubes with normal saline before suctioning (O’Neal, Grap, Thompson, & Dudley, 2001). Based on the evidence gathered through several studies, the potentially deleterious effects of this practice have become widely recognized. Conceivably, a meta-analysis approach to clinical studies will be expedited by convergence of large clinical data repositories across care settings, thereby making available to practitioners the collective contribu- tions of health professionals and longitudinal outcomes for individuals, families, and populations.
Nurses need to be engaged in the design of CIS tools that support access to and the generation of nursing knowledge. As we have emphasized, the adoption of clini- cal data standards is of particular importance to the future design of CIS tools. We are also beginning to see the development and use of expert systems that implement knowledge automatically without human intervention. For example, an insulin pump that senses the patient’s blood glucose level and administers insulin based on those data is a form of expert system. The expert system differs from decision support tools in that the decision support tools require the human to act on the information pro- vided, whereas the expert system intervenes automatically based on an algorithm that directs the intervention. Consider that as CISs are widely implemented, as standards for nursing documentation and reporting are adopted, and as healthcare IT solutions continue to evolve, the synthesis of findings from a variety of methods and world- views becomes much more feasible.
BOX 6-3 CaSE STuDy: CaSTINg TO ThE FuTurE
In the year 2025, nursing practice enabled by technology has created a profes- sional culture of reflection, critical inquiry, and interprofessional collaboration. Nurses use technology at the point of care in all clinical settings (e.g., primary care, acute care, community, and long-term care) to inform their clinical deci- sions and effect the best possible outcomes for their clients. Information is gath- ered and retrieved via human–technology biometric interfaces including voice, visual, sensory, gustatory, and auditory interfaces, which continuously monitor physiologic parameters for potentially harmful imbalances. Longitudinal records are maintained for all citizens from their initial prenatal assessment to death; all lifelong records are aggregated into the knowledge bases of expert systems. These systems provide the basis of the artificial intelligence being embedded in emerging technologies. Smart technologies and invisible computing are ubiqui- tous in all sectors where care is delivered. Clients and families are empowered to review and contribute actively to their record of health and wellness. Invasive diagnostic techniques are obsolete, nanotechnology therapeutics are the norm, and robotics supplement or replace much of the traditional work of all health professions. Nurses provide expertise to citizens to help them effectively manage their health and wellness life plans, and navigate access to appropriate informa- tion and services.
122 ChaPEr 6 History and Evolution of Nursing Informatics
9781284122688_CH06.indd 122 16/12/16 5:56 PM
The Future The future landscape is yet to be fully understood, as technology continues to evolve with a rapidity and unfolding that is rich with promise and potential peril. Box 6-3 helps us to imagine what future practice might entail. It is anticipated that computing power will be capable of aggregating and transforming additional multidimensional data and information sources (e.g., historical, multisensory, experiential, and genetic sources) into CIS. With the availability of such rich repositories, further opportunities will open up to enhance the training of health professionals, advance the design and application of CDSs, deliver care that is informed by the most current evidence, and engage with individuals and families in ways yet unimagined.
The basic education of all health professions will evolve over the next decade to incorporate core informatics competencies. In general, the clinical care environments will be connected, and information will be integrated across disciplines to the benefit of care providers and citizens alike. The future of health care will be highly dependent on the use of CISs and CDSs to achieve the global aspiration of safer, quality care for all citizens.
The ideal is a nursing practice that has wholly integrated informatics and nursing education and that is driven by the use of information and knowledge from a myriad of sources, creating practitioners whose way of being is grounded in informatics. Nursing research is dynamic and an enterprise in which all nurses are engaged by virtue of their use of technologies to gather and analyze findings that inform specific clinical situations. In every practice setting, the contributions of nurses to health and well-being of citizens will be highly respected and parallel, if not exceed, the preemi- nence granted physicians.
Summary In this chapter, we have traced the development of informatics as a specialty, defined nursing informatics, and explored the DIKW paradigm central to informatics. We also explored the need for and the development of standardized terminologies to capture and codify the work of nursing and how informatics supports the knowledge work of nursing. This chapter advanced the view that every nurse’s practice will make contributions to new nursing knowledge in dynamically interactive CIS environ- ments. The core concepts associated with informatics will become embedded in the practice of every nurse, whether administrator, researcher, educator, or practitioner. Informatics will be prominent in the knowledge work of nurses, yet it will be a sub- tlety because of its eventual fulsome integration with clinical care processes. Clinical care will be substantially supported by the capacity and promise of technology today and tomorrow.
Most importantly, readers need to contemplate a future without being limited by the world of practice as it is known today. Information technology is not a panacea for all of the challenges found in health care, but it will provide the nursing profes- sion with an unprecedented capacity to generate and disseminate new knowledge at rapid speed. Realizing these possibilities necessitates that all nurses understand and leverage the informatician within and contribute to the future.
Summary 123
9781284122688_CH06.indd 123 16/12/16 5:56 PM
This text is designed to include the necessary content to prepare nurses for prac- tice in the ever-changing and technology-laden healthcare environments. Informatics competence has been recognized as necessary in order to enhance clinical decision making and improve patient care for many years. This is evidenced by Goossen (2000), who reflected on the need for research in this area and believed that the focus of nursing informatics research should be on the structuring and processing of patient information and the ways that these endeavors inform nursing decision mak- ing in clinical practice. The increased use of technology to enhance nursing practice, nursing education, and nursing research will open new avenues for acquiring, pro- cessing, generating, and disseminating knowledge.
In the future, nursing research will make significant contributions to the devel- opment of nursing science. Technologies and translational research will abound, and clinical practices will continue to be evidence based, thereby improving patient outcomes and decreasing safety concerns. Schools of nursing will embrace nursing science as they strive to meet the needs of changing student populations and the increasing complexity of healthcare environments.
Summary Nursing science influences all areas of nursing practice. This chapter provided an overview of nursing science and considered how nursing science relates to typical nursing practice roles, nursing education, informatics, and nursing research. The Foundation of Knowledge model was introduced as the organizing conceptual framework for this text. Finally, the relationship of nursing science to nursing informatics was discussed. In subsequent chapters the reader will learn more about how nursing informatics supports nurses in their many and varied roles. In an ideal world, nurses would embrace nursing science as knowledge users, knowledge managers, knowledge developers, knowledge engineers, and knowl- edge workers.
]=