Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Experiment vector addition of forces

26/10/2021 Client: muhammad11 Deadline: 2 Day

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Calculation Guru
Financial Analyst
Assignment Hub
Top Academic Guru
Coursework Helper
Assignment Hut
Writer Writer Name Offer Chat
Calculation Guru

ONLINE

Calculation Guru

I am an elite class writer with more than 6 years of experience as an academic writer. I will provide you the 100 percent original and plagiarism-free content.

$16 Chat With Writer
Financial Analyst

ONLINE

Financial Analyst

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$23 Chat With Writer
Assignment Hub

ONLINE

Assignment Hub

I am an elite class writer with more than 6 years of experience as an academic writer. I will provide you the 100 percent original and plagiarism-free content.

$49 Chat With Writer
Top Academic Guru

ONLINE

Top Academic Guru

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$29 Chat With Writer
Coursework Helper

ONLINE

Coursework Helper

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$28 Chat With Writer
Assignment Hut

ONLINE

Assignment Hut

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$46 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Principles for equal opportunity equity and diversity nsw education department - Consider how to define net exports and net capital outflow - Lyrics black eyed peas where is the love - Free from slavery crossword - Ningbo new century import and export company ltd - Reading weather maps practice - Management - The sun for sorrow will not show his head - Does my sexiness upset you - Coral reef abiotic factors - Civilize them with a stick - A firm offers routine physical examinations - 5 page essay - Assignment 5 employee compensation and benefits - Biblical allusions in literature - Week 6 Discussion BIO2070 MICROBIOLOGY - Your consulting firm has been hired - Week 5 Research Paper: Develop a Computer/Internet Security Policy - I need work - Steps to lighting a bunsen burner - Front office manager meaning - BI A - Assignment 3: Sarbanes-Oxley Act (SOX) and ERP Solution - Traits of effective writing - United states registered nurse workforce report card and shortage forecast - Independent variable for bacterial growth - Module 16 displaying analyzing and summarizing data answers - M/3 - Dui checkpoints tonight illinois 2019 - Discussion(CM) - Eli lilly in india rethinking the joint venture strategy pdf - Compound sentences about friendship - Magnetic field in a coil lab report - Theory, Research, and Practice - Army leadership regulation 6 22 - Architecture definition document example - Job act gov au - International Trade Summary - Does lady macbeth kill herself - Sunnybrook iga opening hours - Papers - ECON 3100-090 Fall 2020 - Access capstone project 1 - Zeise's salt - Why does 45 degrees maximum range - Bioflix activity: mechanisms of evolution -- natural selection: camouflage - Quiz - Celestine prophecy personality types - Advanced Industrial Hygiene - Skychefs inc prepares in flight meals - A lender demands an interest rate in part to compensate for any expected - Georges manor georges hall - How to calculate nominal income - Spiral spring experiment in physics - Assignment on marketing plan for a new product ppt - Hofner serial number lookup - Kingsford smith drive brisbane map - Assessment 3: Report - Event planning feasibility study sample - Does social media make us lonely essay - Allyl cyanide sigma and pi bonds - 43 yallambee road jindalee - Kathryn barnard theory - Functional level strategy of coca cola - Steve biko academic hospital occupational therapy pretoria - Red bull case study answers - HR - Job Description for a Personnel Coordinator position - Write a paper developing the impact and influence upon American culture and society of ONE of the individuals listed below. - Gcu code of conduct - Project 7 acids and bases lab report - Compare and contrast two different air traffic control entities - How does the price of a motorcycle in Japan compare to other countries? - Henry c gatz quotes - Evidence-Based Project - Benchmark evidence based practice project paper on diabetes - Supply Chain management - Percentage of copper in brass experiment - Foliation and lineation pdf - Give me liberty seagull fourth edition pdf - Monroe's motivated sequence pdf - Equation for sulfuric acid and copper oxide - Determination of water hardness by edta titration calculations - Significant event analysis form - Chemistry bridging course unsw - February 5 holidays & observances - The basic patterns of the universe are spoken of in the confucian book of - Kinematic viscosity reynolds number - Order 2215007: William ADelbert, foster - Mass communication living in a media world 7th edition - NEED DONE BY TUES/ THE ASSIGNMENT ATTACH - How old was jessie pope when she died - How to write diary entry - 30 grams to kilograms - City of stirling town planning scheme map - Barefoot moneymovement org au - Arctic ruby oil pros and cons - Bridge to terabithia essay questions - I need 1500 words on Private Business School - Climate change essay - Essay