Name: ______________________________________ Section: ___________
ANT 3514C – Introduction to Biological Anthropology
Lab 6: Primate Anatomy & Taxonomy
Lab Objectives:
• Evaluate the dental formula of an unknown primate and place it within a major clade
• Interpret the difference between gradistic and cladistic methods of grouping primates
• Identify the anatomical synapomorphies that distinguish the major primate clades
• Draw a cladogram to illustrate the modern, broadly-accepted primate phylogeny
Purpose: To examine the skeletal traits that distinguish the major primate clades.
The study of non-human primates has been recognized since ancient times as relevant to understanding human anatomy. This was perhaps best recognized by a wide audience of scholars for the first time in 1735 when Carolus Linnaeus, despite his strong creationist views, included humans with other apes and monkeys in the group Anthropomorpha. By the tenth edition of his Systema Naturae in 1758 he had abandoned this term and began calling the group by the familiar name we now use: Order Primates. Linnaeus was motivated to group humans with other primates because of the many anatomical similarities that he perceived uniting them. In modern biological terms, we now refer to these structures as synapomorphies, or ‘shared derived traits.’ For instance, all primates have a broad, flat nail on their big toe, which is a structure unlike any of the narrow claws found in other mammals. We use synapomorphies like these to reconstruct patterns of shared ancestry and build cladograms to better understand the pattern of primate evolution and where humans belong in it. This method of reconstructing relationships between taxa based on shared derived characteristics is known as cladistics.
While morphology and phylogeny have shared a close relationship for centuries, the reliance on synapomorphies to group organisms is relatively recent. In the early 20th century, primatologists such as Wilfrid Le Gros Clark (famous for helping to debunk the Piltdown Man fraud) grouped primates based on their overall similarity in appearance. This method was reminiscent of Aristotle’s “Great Chain of Being,” with primitive primates at the base and humans at the apex. This way of thinking has been called gradistic, because it suggests primate evolution proceeds in a simple, uniform direction for all traits from primitive to derived. While this system has intuitive appeal, it does not correspond with the way we think evolution proceeds. Modern primatologists and anthropologists use cladistic methods based on a nested hierarchy of synapomorphies, because we believe these more accurately reflect how evolution works.
Although phylogenetic trees are built today using cladistic methods, it is clear that gradistic thinking still subconsciously underlies much of our approach to reconstructing evolution. You may have already noticed that phylogenetic trees that include humans tend to place them at one extreme end of the tree, implying some directionality or end goal to evolution, even though there is no reason they need to be placed there! Within the primate order the shift from gradistic to cladistic thinking has impacted how we perceive the relationships of many taxa, most notably the tarsier, which we will investigate more in Station 3. You will be exposed to more examples of gradistic thinking when looking at the human fossil record, where many features (such as brain size) are continuous, and identifying synapomorphies can be particularly difficult. For this lab we will investigate many of the important skeletal synapomorphies that define the largest primate clades.
Station 1: What defines a primate? (0.6 pt.)
A college happened upon a mystery skull while looking through a mammalian skeletal collection. She thinks it may be a primate and comes to you for your expert opinion. She cannot mail you the skull so she emails youaeveral photos. Examine the photos below. Use the list of primate features (found in the lab reading for this week) to help you make the distinctions.