Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Flow measurement lab report discussion

17/11/2021 Client: muhammad11 Deadline: 2 Day

EGME-306B-06

Spring 2015

Engineering Report

EXPERIMENT #1

Flow Through A Venturi Meter

Using Water As The Working Fluid

(Ref. Experimental Data Group 02- Taken on Feb 6, 2015)

By

02/20/2015

TABLE OF CONTENTS

List of Symbols………...…………………………………………………………………………………………2

Abstract…………………………………………………………………………………………................3

Procedure………………………………………………………………………………………………….4

Theory……………………………………………………………………………………………………..5

Results……………………………………………………………………………………………………10

Sample Calculations………………………………………………………………………………………………18

Error Analysis…………………………………………………………………………………………………..22

Discussion………………………………………………………………………………………………..26

References………………………………………………………………………………………………..28

LIST OF SYMBOLS

………………………………………………………………………………………..Mass flow rate ()

……………………………………………………………………………………………..flow rate ()

………………………………………………………………………………………...Mass density ()

……………………………………………………………………………………………...…gravity ()

……………………………………………………………………………………..…inlet pressure ()

………………………………………………………………………………………….inlet velocity ()

…………………………………………………………………………………………...inlet area ()

………………………………………………………………...inlet throat height from datum point ()

………………………………………………………………………………………outlet pressure ()

………………………………………………………………………………………...outlet velocity ()

………………………………………………………………………………………….outlet area ()

……………………………………………………………….outlet throat height from datum point ()

C…………………………………………………….………………discharge coefficient (dimensionless)

c………………………………………………………………………………………...speed of sound ()

Re……………………………………………………………………...Reynold’s number (dimensionless)

M…………………………………………………………………………...Mach number (dimensionless)

ABSTRACT

The motivation of this laboratory experiment is to analyze the flow of a fluid passing through a Venturi meter. The scheme is to compare the experimental volumetric flow rate to the theoretical volumetric flow rate. Deriving the Venturi velocity formula from the Bernoulli and continuity equations attains the theoretical volumetric flow rate.

It was found that the assumption of a frictionless surface through the Venturi meter was incorrect. When the water flows there is a head loss, which causes dissipation of energy throughout the system. Other factors such as human error, air bubbles in the fluid, and calculation round-offs led to discrepancies in the data.

RESULTS SUMMARY

Table 1: Pressure in piezometer tube and distance the fluid elevated to in Venturi meter

Venturi data and Piezometer Station

Piezo tube H2O height at station X , hX in.± .1in.

Distance from end, X in.

Venturi diameter D in. at X

Piezo. Station

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

hA-hD≈10 inH20

hA-hD≈8 inH20

hA-hD≈6 inH20

hA-hD≈4 inH20

hA-hD≈2 inH20

hA-hD≈.6 inH20

0

1

A-

9.3

8.8

8.0

7.0

6.1

5.5

1.125

1

A

9.3

8.8

8.0

7.0

6.1

5.5

1.625

1

A+

9.3

8.8

8.0

7.0

6.1

5.5

1.875

0.906

B

8.9

8.3

7.7

6.9

6.0

5.4

2.375

0.719

C

5.4

5.3

5.4

5.3

5.3

5.2

2.625

0.6445

D-

0.2

0.8

1.9

3.0

4.1

4.9

2.9375

0.6445

D

0.2

0.8

1.9

3.0

4.1

4.9

3.25

0.6445

D+

0.2

0.8

1.9

3.0

4.1

4.9

3.5

0.652

E

0.7

1.2

2.2

3.1

4.2

4.9

3.875

0.705

F

3.4

3.6

3.9

4.3

4.7

5.0

4.5

0.759

G

4.9

4.9

5.0

5.1

5.1

5.1

5

0.813

H

5.9

5.9

5.6

5.5

5.3

5.2

5.5

0.866

K

6.7

6.4

6.1

5.8

5.5

5.5

6

0.92

L

7.1

6.9

6.5

6.0

5.6

5.3

6.75

1

M-

7.8

7.4

6.9

6.3

5.7

5.3

6.875

1

M

7.8

7.4

6.9

6.3

5.7

5.3

7.875

1

M+

7.8

7.4

6.9

6.3

5.7

5.3

Graph 1: Piezometer tube versus distance of fluid in Venturi meter

Graph 2: Volume flow rate versus the square root of the height difference

Graph 3: Ideal Volume Flow Rate versus Discharge Coefficient

Graph 4: Free Stream and Throat velocity versus actual volume flow rate

Graph 5: Free stream and throat Mach number versus actual volume flow rate

Graph 6: Free stream and throat Mach number versus actual volume flow rate

DISCUSSION AND CONCLUSION

The Venturi meter is one of the most efficient systems with minimal error for use in experimentation surfaces. In comparison to the sharp-edged orifice of flow nozzle, the Venturi meter shows the most minimal head loss caused by friction and heat.

Analyzing the data acquired, the values attained for velocity and volumetric flow rate are in correlation with the Venturi meter experiment. There were slight deviations that occurred in conducting the experiment due to realistic conditions; thus, compared to the calculated values where ideal conditions were taken into account. The factors such as heat loss and friction affected the system and prevented the ideal-condition results. Another factor affecting the measurements is the readings taken from the manometer are the students’ readings, they may not have been as accurate as possible which have resulted in a percentage error.

Contained in the “Results” section the dimensionless measurements of Reynolds number and the discharge coefficient show the Reynolds number increases and so does the discharge coefficient. This concludes that the larger the cross-sectional area the more efficient the system becomes, this is true for a certain ratio.

Errors cannot be completely avoided therefore a margin of error is expected given the high possibility of factors affecting error. In our attempt to eliminate all air bubbles, it appeared as if they were all gone but our visual judgment only goes so far, causing small errors in data collected. Other errors arise in the contents of the water such as impurities; even though the water was distilled, the distillations might not have been 100% effective. Due to the minimal amount of theoretical background, an error in precision is inevitable. Calculation round-offs are another contributing factor in our error margin.

APPENDICES

APPENDIX A

EXPERIMENTAL DATA

APPENDIX B

THEORY

A Venturi meter is an instrument used to measure the flow rate through a pipe. The design includes divergent and convergent sections, which change the flow velocity of the fluid for experimental purposes. Below, in figure one, the setup for the experiment includes two tanks, one for the fluid storage, and the metal tank is for the collected fluid, which has passed through the Venturi meter and pipe.

Venturi meters are commonly preferred over other meters due to their minimal head loss corresponding to its streamline design. In the system, there is no loss of mass and the fluid is in steady flow throughout the experiment, therefore, the conservation of mass equation can be applied to the Venturi meter experiment:

Figure 2 – Venturi Meter

The mass flow at i and j are equal. Water is considered incompressible; therefore, the equation can be simplified:

From the equation it can be concluded that velocity decreases and increases at the diverging and converging sections, respectively, compensating for the continuity of mass.

To calculate pressure, piezometer tubes are integrated in the Venturi meter system. Using the Bernoulli’s equation, for steady, incompressible frictionless flow along a streamline gives a relationship between the constant measure of total energy in a system with static pressure, kinetic energy, and potential energy of a flow. Consider a fluid flowing through the pipe having reached equilibrium state, the fluid in the piezometer tube is a non-flow static condition, velocity equals zero. Under these conditions, the Bernoulli equation reduces to:

The expression gives the relationship between the change in pressure and change in elevation of a fluid within the tube. Utilizing the results achieved for the expressions for mass continuity and hydrostatic balance on a fluid column, and the linear momentum equation, the velocities for the Venturi meter at each station can be calculated. The linear momentum equation is:

All Venturi meters part of the experiment had an equal elevation; therefore, the equation can be simplified.

And since,

Then,

APPENDIX C

PROCEDURE

The equipment of the experiment consists of a flow bench, which allows water to flow through the Venturi meter. Under the flow bench a weighing tank is attached to one end of a lever where weight is added in order to calculate mass flow rate. Before beginning the experiment, the apparatus was calibrated by the lab technician. Air bubbles inside the system can cause discrepancies in the data; therefore, the flow control and bench supply valves were slightly opened by the technician to allow the water to flow and eliminate the air bubbles within the system.

In the next step we closed the apparatus flow control valve and opened the air purge valve on the manifold to allow the water to rise into the piezometer tube. The height of the water was recorded on our data sheets. Each team member was assigned a task prior to conducting the experiment; this allowed the experiment to flow smoothly. Once everyone was ready, the apparatus flow control valve was opened all the way.

The timer was started when the valve was opened, when the arm holding the weight rose, time was recorded and 4 lbs. were added each time until a total of 20 lbs. Knowing the amount of water it took to fill the tank and the time elapsed, we were able to determine the mass flow rate. At the end of the trial, the new piezometer tube pressures were carefully noted and the experiment was conducted again, six times. Different flow rates were collected at each trial.

APPENDIX D

CALCULATIONS

APPENDIX E

ERROR ANALYSIS

APPENDIX F

REFERENCES

1. Engineering 306B –Unified Laboratory Manual

2. Fox and McDonald’s Introduction to Fluid Mechanics (8th Edition)

3. http://en.wikipedia.org/wiki/Venturi_effect

4. http://www.hendersons.co.uk/wms/venturi_principle.html

Pressure vs. Distance

Run 1 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 9.3 9.3 9.3 8.9 5.4 0.2 0.2 0.2 0.7 3.4 4.9 5.9 6.7 7.1 7.8 7.8 7.8 Run 2 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 8.8 8.8 8.8 8.3 5.3 0.8 0.8 0.8 1.2 3.6 4.9 5.9 6.4 6.9 7.4 7.4 7.4 Run 3 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 8.0 8.0 8.0 7.7 5.4 1.9 1.9 1.9 2.2 3.9 5.0 5.6 6.1 6.5 6.9 6.9 6.9 Run 4 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 7.0 7.0 7.0 6.9 5.3 3.0 3.0 3.0 3.1 4.3 5.1 5.5 5.8 6.0 6.3 6.3 6.3 Run 5 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 6.1 6.1 6.1 6.0 5.3 4.1 4.1 4.1 4.2 4.7 5.1 5.3 5.5 5.6 5.7 5.7 5.7 Run 6 0.0 1.125 1.625 1.875 2.375 2.625 2.9375 3.25 3.5 3.875 4.5 5.0 5.5 6.0 6.75 6.875 7.875 5.5 5.5 5.5 5.4 5.2 4.9 4.9 4.9 4.9 5.0 5.1 5.2 5.5 5.3 5.3 5.3 5.3
Distance (in.)

Pressure (psi)

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Writer Writer Name Offer Chat

Writers are writing their proposals. Just wait here to get the offers for your project...

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Stepwise approach to asthma treatment - Luminol can be used at crime scenes to - How long is the baseline in measuring stellar parallax - Specification for highway works series 600 - Certificate 3 in retail operations mcdonald's - PiCO Nursing M2L5 - Napoleon total war huge naval battle - 887 - Week 4 discussion - A fantastic cave with odysseus and calypso - ||:husband|::wife LOVe +91-7023339183 problems solution MOLviji - According to the lines in bold, what is one reason for schenck’s indictment? - Hipot test connection diagram - How to prepare consolidated accounts - Finance - Urban outfitters mission and vision statement - Historical themed party ideas - Maps ngdc noaa gov viewers hazards - How to undo a square root - Rockingham parcel locker rockingham wa 6168 - Post- Tania - Pathophysiology - Fact finding in system development - Describe the moment captured in leonardo's last supper painting - For goals to be motivating they must be - How to plot lorenz curve in excel - Delegation of powers by board of directors - English writing 2 - Periodic trends and properties of elements lab - Annotated Bibliography Assignment - Chase bank bissonnet hwy 6 - Data driven decision making wgu - A cheese glut is overtaking america - What does the jabberwocky look like - California state university dominguez hills occupational therapy - How salt affects the freezing point of water - Post war voices emerge 1950s 1960s compare and contrast essay - Case Analysis - Nintendo - Static definitions of career development and career counseling interventions are - Dq tomorrow - 3 Types of Data Visualization - Argos pet insurance reviews - In a prominent bar in secaucus one day explained - Forensic entomology is the study of - Nursing Leadership and Management - Which property imparts paint with its most distinctive forensic characteristics - Dale carnegie secrets of success - Clawfoot bathtub warehouse san marcos - Lay my burden down meaning - Universal testing machine lab report - Eassy - Worksheet - PP6 - The real leadership lessons of steve jobs harvard business review - Discuss the importance of conducting a thorough literature review as it relates to the research process. Use a reference from scholarly literature or your text to support your primary response - Pender's health promotion model pdf - So proudly we hail watch online - Verbal irony in the rocking horse winner - Chinese civilization a sourcebook 2nd ed pdf - Is it disrespectful to wear an american flag bandana - Tina y linda duermen en un hotel de lima - Sodium hypochlorite density g ml - W2Acct - Rossendale pet crematorium and memorial gardens - Bobby knight vs coach k - Forever 21 target market demographics - Identifying text structure 4 answer key - Why do goldfish release dilute urine - Projects that spend much time ________ are sometimes said to be in analysis paralysis. - Country Build on Genocide & Enslavment - Asce 7 hazard tool - 84199 jenny b gift cards - Manchester united soccer club case study project management - Soothe by apana balance core trainer - Comp 2 paper - W3 prompt 2 - Consider the following uneven cash flow stream - Walter mitty syndrome definition - Medisys corp case study ppt - Blazeview email - Personal services income test - Boronia park public school - GHF A.6 - Contemporary management issues and challenges - Daynes and farris 2003 - Apa ethical decision making model - Fantastic mr fox badger - Krispy kreme donut fundraiser - Ssp title & escrow solutions llc - Leadership case study - What is the market portfolio beta - Nyx medical billing company in bangalore - Phil 201 quiz 1 - Acssses control - Business document design and development strategy - Robert merton's strain theory - James madison research paper - To introduce her class to binomial distributions - On page 14 of the call of the wild - Exercise 6 8 bank reconciliation and adjusting entries lo p3