Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Force table and vector addition of forces lab report

02/12/2021 Client: muhammad11 Deadline: 2 Day

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Instant Assignments
Instant Homework Helper
Financial Analyst
Helping Hand
Coursework Assignment Help
Instant Assignment Writer
Writer Writer Name Offer Chat
Instant Assignments

ONLINE

Instant Assignments

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$28 Chat With Writer
Instant Homework Helper

ONLINE

Instant Homework Helper

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$28 Chat With Writer
Financial Analyst

ONLINE

Financial Analyst

I am an elite class writer with more than 6 years of experience as an academic writer. I will provide you the 100 percent original and plagiarism-free content.

$48 Chat With Writer
Helping Hand

ONLINE

Helping Hand

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$23 Chat With Writer
Coursework Assignment Help

ONLINE

Coursework Assignment Help

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$15 Chat With Writer
Instant Assignment Writer

ONLINE

Instant Assignment Writer

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$37 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Esol skills for life entry 3 4692 - Can aldehydes form hydrogen bonds with water - Alma ata primary health care principles - PC BUILD AND MANUAL PART 2 - Challenges with realising aspirations of the common good - Mitigation Plan Creation - PAPER #1: Analysis of a Sura from the Qur’an - Evershine tl 3000 inverter - Cloud Computing - Experiment 25 calorimetry lab report - Colombo frozen yogurt - Post - Health and Human science 460 class - Mafs 912 g co 3.10 answers - 551 oceana drive howrah - Romeo and juliet spoof - Blue splash silkie chicken - Financial analysis - Netflix lifetime value - Enthalpy of neutralization of h3po4 and naoh - Hostess mission statement - Heat of combustion worksheet answers - Wellsys tackle discount code - Food lab report - Burglar alarm keypad 9800 - For women of afghanistan by sheema kalbasi - Discussion(CSPM) - Fractional distillation lab report discussion - What is dpe in special education - Is amway center indoors - How to make a parachute out of a grocery bag - University of tasmania mylo - Ballad operas and singspiels were similar because - Po box 1253 sutherland house crawley - What is the difference between football and basketball - Lift thickness and number of passes - Interlude iv showtime lyrics meaning - Edict of milan 313 - Hawke cable gland spanners - Operational : 4 - Week 4 soap note - Movies and meaning 6th edition by stephen prince pdf - Native son vocabulary - Week 22 Leveraging National Crisis for a Public Relations Bonanza - Apple compensation strategy - Southwest airlines pestel analysis - Hatchet chapter 17 summary - Bigfoot entertainment cebu - Ford motor company ethical issues - MatLab program project - Process philosophy and family and marriage - Wk 6 - Final Strategic Plan - Library thinkquest org 19537 - 3 pages needed - Investment banking cover letter - Roots of polynomials exam questions - Movie recommendation system report - Erp ppt for colleges - Operational Excellence Discussion - ART APPRECIATION - Practical english lesson 4 penn foster - Project 3 - Wrigley a subsidiary of mars incorporated - What is the plural of reef - Grundfos magna1 fault codes - You have a network connected using a physical star topology - Rules of thumb guidelines for building services - Asian paints financial statements - Hw2 - Splitting and Joining Strings - Big Data and Cloud Computing - Legal aspects of nursing course - Themis university of melbourne - Week Six Study Guide - What is the story structure of luke 10 38 42 - Monster Essay - Sherman alexie what you pawn i will redeem - Example of a character sketch bible study - Trial balance with adjustments problems - Chemical equation maker for word - Nissan integrated iso 14000 standards in its manufacturing plants - Personal Statement for Graduate School - Average density of sand - Discussion5 - Re expressing data definition - 1 19 torrington place ucl - Genetics and Bioethics - Read and respond to two of classmates' posts - 9780321979070 - Round robin scheduling program in c using linked list - Exadata x7 2 datasheet - Response - Forces in equilibrium lab - The restocking level increases as the service level falls - Experiment 1 enzymes in food - Which source is more objective, trifles or glaspell’s newspaper articles? - Aristotle nicomachean ethics book ii - The road to winter quotes - Why does atomic radius decrease across a period - Eonomics