Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Forces and vectors lab report

05/12/2021 Client: muhammad11 Deadline: 2 Day

Physics Lab ( Vector Addition Of Forces)

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

24/7 Assignment Help
Financial Assignments
Maths Master
Instant Homework Helper
Quick Mentor
Quality Homework Helper
Writer Writer Name Offer Chat
24/7 Assignment Help

ONLINE

24/7 Assignment Help

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$20 Chat With Writer
Financial Assignments

ONLINE

Financial Assignments

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$50 Chat With Writer
Maths Master

ONLINE

Maths Master

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$38 Chat With Writer
Instant Homework Helper

ONLINE

Instant Homework Helper

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$21 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

I am an elite class writer with more than 6 years of experience as an academic writer. I will provide you the 100 percent original and plagiarism-free content.

$18 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$32 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Wk 3 - Topics in Consumer Behavior Presentation - How to make a tv commercial script - How to write a house captain speech - Zn plus hcl balanced equation - Truly tasteless disadvantaged white male jokes ashton applewhite - Prodiscover forensic tool free download - Swift analysis aptitude practice test - What are the basic functions of money - Freezing temperature of corn syrup - Desktop application project in java swing - MKT 345- Discussion 2 - Marie de france milun summary - Key and peele bad internet connection - Pakistan flag hoisted in kerala - Product Design Philosophy - Imaginary audience psychology - Call and response form - Communication - Love juice solomon crook lyrics - The crucible gcse revision - Social media and writing skills - Cash to monthly cash expenses ratio - Jac and jack glasses - Magnesium reacts with steam equation - The edicts of king ashoka - The two merchants of seri questions and answers - Which market structure is characterized by a few interdependent firms - Discuss how attention, deep processing, elaboration, and the use of mental imagery can affect the encoding process. - Post- group - Bt 500 tile adhesive - How to install granite steps - The time period assumption states that - Second class lever diagram - Hp ovo monitoring tool - 2044 kj to calories - Balance Sheet and Income Statement - Malcolm in the middle water park full episode - Network scanning - Cola wars continue coke and pepsi in - International finance - Npn vs pnp transistor - Westberg model of the grieving process - Only intended for brilliant answers - Maestro air 30cm mist fan - Hollow glass prism experiment - Post its notes on a marriage summary - T4 10w 3400k screwfix - Corporate social responsibility - Application of artificial intelligence in robotics ppt - Nwcs cps staff portal - Health and wellbeing responsibility of all poster - Written Analysis - Counseling therapy treatment plan template - Need a concept analysis paper on the topic of factors that contribute to non-compliance of the patient with diabetes. - Royalty to author formula excel - Application for new certificate of title - Components of time series - Enron culture ethics - Statistical methods, and specific tools used in quality measurement and improvement - Sop for bachelor of commerce - Http www apa org pubs databases psycinfo index aspx - Metaphors in the scarlet ibis - Electric field hockey answers - Satya jewelry sample sale nyc - Of mice and men eulogy - Linear Development in Learning Approaches - Train driver situational judgement test practice - Drew marine chemical product catalogue - The ethics of teaching strike and soltis chapter summaries - Case Study - Penn foster bookkeeping final project - Bennett brooks accountants northwich - Starbucks franchise cost in indian rupees - Discussion - What approaches could have yielded additional valuable information - Association of professional chaplains code of ethics - Risk assessment for community event - Critique Essay - Listening to young children lancaster and broadbent 2003 - Nitration of nitrobenzene is difficult than benzene - Uses of personal and family resources - Good microbiology laboratory practice - Discussion - Operational level agreement definition - Case study health assessment - Red rooster quarter chicken and chips calories - Classifying triangles by angles - Dimensionality reduction reduces the data set size by removing ___ - The time spent in days waiting for a heart transplant - Ethics of drug testing in the employment setting - Module 02 Written Assignment - Outline and Annotated Bibliography - Research Assignment - What is an agile mis infrastructure - How to paint galvanised steel - How to write an extended response - Milling machine v blocks - How to create a scrum board - Advantages and disadvantages of honey and mumford learning styles - Karla tanner opens a web consulting business - Ensign amendment