Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Forces and vectors lab report

14/10/2021 Client: muhammad11 Deadline: 2 Day

Physics Lab ( Vector Addition Of Forces)

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Finance Homework Help
Quick N Quality
George M.
Essay & Assignment Help
Solution Provider
Smart Tutor
Writer Writer Name Offer Chat
Finance Homework Help

ONLINE

Finance Homework Help

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$18 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$26 Chat With Writer
George M.

ONLINE

George M.

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$36 Chat With Writer
Essay & Assignment Help

ONLINE

Essay & Assignment Help

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$42 Chat With Writer
Solution Provider

ONLINE

Solution Provider

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$22 Chat With Writer
Smart Tutor

ONLINE

Smart Tutor

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$48 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Tforce final mile vendor connect - Trial and error learning - Margaret atwood scarlet ibis - Schroder uk real estate fund - Humn 8660 - Market architecture case study - Statistics chapter 1 data collection - LecciΓ³n 4 lesson test conjugar - John dollard and neal miller learning theory - Access grader project - How to do manova in spss - Thomas and kilmann conflict mode instrument pdf - Contemporary issues teenagers face today - 80.1 kg in stone - Solid magnesium plus oxygen gas yields solid magnesium oxide - Jewellery shops garden city perth - Call of cthulhu 7th edition occupations - Fish kill mystery case study answers - Protective measures for fault protection - How to make a tows matrix - Numerical coefficient and literal coefficient examples - 735 Wk 2 DQ 1# - Dja dja wurrung map - Intel business strategy case study pdf - Tracks louise erdrich quotes - Difference between diode and crystal diode - Reaction of diborane with oxygen - Mobile marketing association guidelines - Magnetic starter wiring diagram - Discussion - Example of speech outline about life - Self Esteem intended for brilliant answers only - Programmed and nonprogrammed decision making ppt - Devilbiss fluid tip chart - How to alphabetize business names - HS 2200 Social Welfare - Gus johnson outro music - Psy: Teaching and Learning - 39 heather close smythes creek - Need Saturday 9/19/20 by 8:30pm EST Brainstorming & Research Framework - On course journal entry 6 - Gates foundation grant application - Frankenstein chapter 13 summary - Hartley v ponsonby case summary - OJ Simpson criminal and civil case - Sparknotes nickel and dimed chapter 1 - Fombrun tichy and devanna 1984 - Orangetheory swot analysis - One reason that video creates a stronger connection with consumers is - Is 79 a composite number - Jeremy ethier program review - IA week3 DB - Where do the microtubules of the spindle originate - Aecc global philippines reviews - How long is iphone 6s warranty - 3 responses with 60 words each (No plag) - The elephant in the village of the blind - Grouping ell students based on proficiency - Why did tollund man die - Mingzhu xu garlic pennsylvania - Camino por el hospital. camino por los pasillos del hospital. camino en direcciΓ³n al hospital. - Cosmic ferro alloys ltd credit rating - Speaker Response - Health Promotion & Disease Prevention in Older Adults - Android malware detection on machine learning - Concept Analysis in the Nursing Field essay - Benefit realisation tracking template - Joy luck club food - Six kingdoms of life characteristics - 37 dalry road darlington - For anyone - Discussion questions (two) - Draw two resonance structures of the cation shown below - Examination of Health Care Laws - WSJ article Analysis - Computer work attached - Week 3 Discussion/ Pay-for-perform (P4P) - Glencoe science virtual labs - No witchcraft for sale characters - The cost of mobile billboards depends on - Discussion - Hsbc bank in bangladesh - Percent of oxygen in potassium chlorate lab answers - Purdue applied behavior analysis - What are the four characteristics of money - Daddy by sylvia plath - Goals for stevens district hospital part 1 - Sam cengage access project 1 - Week 2 healthcarepolicy - PPT 8 - Angular distance and displacement - Why did the math teacher open a window company - Jonna henningsson jonas lindh - Mother any distance poem analysis - Access 2016 in practice ch 3 independent project 3 5 - Fife voluntary action jobs - Warlow v harrison case summary - Bjmnx - Bonaire pyrox premium power flued 30 wall furnace - Ford motor company basic financial ratios case study