Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Forces and vectors lab report

14/10/2021 Client: muhammad11 Deadline: 2 Day

Physics Lab ( Vector Addition Of Forces)

Vector Addition of Forces

Objectives: To use the force table to experimentally determine the force that balances two or more forces. This result is checked by analytically adding two or more forces using their horizontal and vertical vector components, and then by graphically adding the force vectors on the force table.

Theory: If several forces are acting on a point, their resultant 𝑅 is given as

𝑅=𝐴+𝐡+𝐢

Rx = Ax + Bx + Cx

Ry = Ay + By + Cy

R = 𝑅= 𝑅!!+𝑅!! !!𝑅!

πœƒ! = tan 𝑅!

Then if the equilibrant 𝐸 is a force that brings the system to equilibrium

E+𝑅=0, this means

𝐸=βˆ’π‘… (E = R, ΞΈE = ΞΈR+180Β°)

This means Ex = -Rx and Ey = -Ry

Note for today’s lab: read the details, discuss with your group, and follow the instructions systematically. We have done several of these questions in class so now work by yourselves. If you want more details, look up your textbook or online.

Method: You will hang some mass on the pulley hangers that are attached by a thread. This means the weight of that mass is a force vertically down. However, the string is attached to the central ring of the force table, and this means a tension equal to the weight of the mass is a force acting on the central ring. This means you can set up one or more forces acting on the central ring, calculate their resultant force (resultant, 𝑅).

Then you can determine what force (Equilibrant, 𝐸) would balance these forces to bring the system to equilibrium.

Apparatus:

Force table, 4 pulley clamps, 3 mass hangers, 1 mass set, string (or spool of thread)

Force table: A force table is a simple set up that can be used to observe vector addition and equilibrium. You can attach a (one or more) pulley at the edge of the table, and hang a mass on a string that goes through this pulley. Hanging mass means a weight is acting downward and the tension on the hanging string is acting upward. However, on the top of the table, the string is attached to a central ring. This string applies a horizontal tension to the ring. The central ring is our object of interest and we will observe the effect of various forces on this ring. You can change the magnitude of the force by changing the hanging mass.

The table surface has a protractor so you can set up vectors in specific directions.

You can find more information online on how a force table works.

If a mass β€œm” is hanging over the pulley, the mass has a force downward (= the weight of the mass, mg). And the tension on the string is upward. The magnitude of the tension

)

mg

=

)

(

image credit: CCNY CUNY

Set up the force table such that 0 of the table protractor is on your right (just like x-axis on a Cartesian coordinate system. This means 0Β°, 90Β°, 180Β°, and 270Β° should be along +x, +y, -x, -y of your coordinate system.

(image credit: CCNY CUNY)

Resultant vs. Equilibrant

Resultant force is the vector sum of the individual forces acting on the ring. The equilibrant is the force that brings the system to equilibrium.

(image credit: CCNY CUNY)

Precaution:

(1) Ensure that the central pin on the force table is always attached in place before and while you hang any mass unless otherwise specified. Otherwise the mass can suddenly drop and hurt someone (and also mess your experiment).

(2) Measure/note the mass of each hanger before you use it.

(3) The force needed to balance the force table is not the resultant force but the equilibrant force, which is negative of the resultant.

Experimental Procedure I: Use of only one force.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang a mass (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass m [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

200g

0.2kg

1.960N

50

1.260

1.501

Resultant

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.96N

50

Equilibrant

1.96N

230

Step 2: now hang the mass for force 𝑨. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure II: Use of two forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass m

[g]

Mass [kg]

Magnitude mg [N]

Angle ΞΈ

[Β°]

x-

component

[N]

y-

component

[N]

𝑨

100g

.100kg

0.98N

0

0.98

0N

𝑩

75g

.075kg

0.735N

60

0.37

0.64N

Resultant

1.35N

0.64N

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.5N

25

Equilibrant

1.5N

205

Step 2: now hang the masses for forces 𝑨 and 𝑩. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

Experimental Procedure III: Use of three forces.

Step 1: Calculation only. Do not hang any mass yet; you will do that in Step II after you finish your data table below.

You will hang two masses (an example: 100 g) on a hanger. The angle should be 0Β°. Fill out the table below.

Force

Mass

m[g]

Mass

m[kg]

Magnitude

mg[N]

Angle

ΞΈ[Β°]

X

Component

[N]

y-

component

[N]

𝑨

25

0.025kg

0.0245N

0

0.245

0

𝑩

50

0.050kg

0.49N

30

0.424

0.25

π‘ͺ

125

0.125kg

0.1225N

70

0.42

1.15

Resultant

1.089

1.40

Then we can write the resultant and the equilibrant below

Force

Magnitude

Angle

Resultant

1.77N

52

Equilibrant

1.77N

232

Step2: Now hang the masses for forces 𝑨 and 𝑩 and π‘ͺ. Then apply the equilibrant force as you determined in your data table above.

To check if the system is actually in equilibrium, remove the central pin (at the center of the ring). If your system is actually in equilibrium, the ring will stay in place otherwise the masses will fall off in the direction on any net force.

Explain your observations.

What to include in your lab report:

1) Your data tables and observations, comments, and analysis for three procedures you performed.

2) Draw a free body diagram for the ring in each case.

3) Explain why the forces on the central ring can be measured using the hanging masses.

1

1

1

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Maths Master
Smart Tutor
Financial Analyst
Top Essay Tutor
Accounting & Finance Master
Coursework Help Online
Writer Writer Name Offer Chat
Maths Master

ONLINE

Maths Master

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$29 Chat With Writer
Smart Tutor

ONLINE

Smart Tutor

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$41 Chat With Writer
Financial Analyst

ONLINE

Financial Analyst

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$30 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$23 Chat With Writer
Accounting & Finance Master

ONLINE

Accounting & Finance Master

I am an elite class writer with more than 6 years of experience as an academic writer. I will provide you the 100 percent original and plagiarism-free content.

$41 Chat With Writer
Coursework Help Online

ONLINE

Coursework Help Online

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$37 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Compare and contrast essay of Followership and Servant Leadership - Vmware horizon cdu - Stop googling let's talk summary - How to unlock landbank iaccess - Homework - IT-project management DQ5A - What are the 3 components of health - Pediatric well child soap note example - Thyroglossal duct cyst pictures - Episure autodetect epidural syringe - MM_ Service Marketing Report - 92 golden rules of success hiroshi mikitani - Willy wonka fat kid - Certified Public Accountabt and certified Management Accountant - 10.5 as a fraction - Observed clinical encounter cicm - Supersize me video questions answer key - 150 canterbury road middle park - Looking down from a stationary tree branch - Helvey and associates duke energy - Daikin online warranty registration - Barrister rokon uddin mahmud - How to make beer's law plot on excel - Mod4Option1 - Season of life jeffrey marx sparknotes - Discussion - Goods receiving process flow chart - Business Law Discussion - Paper - The analytical problem solving model helps minimize impediments to - Fish dichotomous key worksheet answers - Which of the following is not a factor pressuring companies for local responsiveness? - How to draw context diagram - Homework - Answer To Peer, Similarities Less 5%, References 2, APA 6 - Walter dill scott contribution to io psychology - Facebook whatsapp acquisition case study - Pricing strategy of coca cola company - Using models in science teaching - Hr21 employee and manager self service - How to apply black salve - Steam distillation of essential oil lab report - Palo alto networks powerpoint icons - Luton parking penalty charges - Wiify - Supply chain management quiz 1 - Partial fraction of 1 s 1 2 - Nsw centre for effective reading - Dinner plain resort entry - 1 100 transistor circuits - Aqa maths november 2012 mark scheme - Multimodal literacy narrative examples - 2.13 formation of the united states unit test - Examples of naive realism in anthropology - David wallerstein net worth - The Evolution of Online Learning: Navigating the World of Hire Someone To Take My Class Online - Why do you want to work at trader joe's answer - Discuss the extent to which the IASB conceptual framework satisfies the above definition of fairness in Leonard’s comment above. - Connected Access Control - What does aitsl stand for - Assessment 2 - Code of ethics in childcare - The treadmill of consumption james roberts - Vocabulary - 3 7 of 42 - Open collector digital output - How to be a tafe teacher - K report for costco wholesale corporation - Macbeth pbs movie summary - Health and gender interviw - Compare and contrast essay introduction template - Iron iii nitrate solution color - Project assignment sheet - Theory of Constraints - Ice 7th edition conditions of contract pdf - Australian tax tables weekly - Math MidTerm Questions - When god was a woman merlin stone pdf - Sales revenue less cost of goods sold is called - EBP Final - Minoan frescoes differ from egyptian frescoes - George bowman carriage driving - What is telstra hardware repayment option - Lithium hydroxide with nitric acid - The lion king can you feel the love tonight - Changes to the national quality framework - Serenity nail salon trudeau beaute - Short worksheet - Question about R - How to add voiceover to imovie - Best sandy beach in paphos - MSCBA_PA2 - Bunsen burner flame height - 8 2 2 project 3 multimedia presentation submission - Nick gereffi cause of death - MKT- 345 Web assign. 1 - The crayon box that talked coloring page - How to uninstall lanschool mac - Mitosis and meiosis venn diagram - Bill nye atoms and elements