Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Friction on the inclined plane lab report

20/11/2021 Client: muhammad11 Deadline: 2 Day

Physics With Calculus 1 Lab Report Application Of Newton's Laws Of Motion

Lab Manual Irina Golub

July 30, 2017

2

INTRODUCTION

When a body slides over a rough surface a frictional force generally develops which acts to impede the motion. Friction, when viewed at the microscopic level, is actually a very complicated phenomenon. Nevertheless, physicists and engineers have managed to develop a relatively simple empirical law of force which allows the effects of friction to be incorporated into their calculations. This law of force was first proposed by Leonardo da Vinci (1452-1519), and later extended by Charles Augustin de Coulomb (1736-1806) (who is more famous for the discovering the law of electrostatic attraction). The frictional force exerted on a body sliding over a rough surface is proportional to the normal reaction Rn at that sur-face, the constant of proportionality depending on the nature of the surface. In other words,

f = µRn (1.)

where µ is termed the coefficient of (dynamical) friction. For ordinary surfaces, µ is generally of order unity.

Consider a block of mass m being dragged over a horizontal surface, whose coefficient of friction is µ, by a horizontal force F. See Fig. 1. The weight W = m g of the block acts vertically downwards, giving rise to a reaction R = m g acting vertically upwards. The magnitude of the frictional force f, which impedes the motion of the block, is simply µ times the normal reaction R = m g. Hence, f = µmg. The acceleration of the block is, therefore,

assuming that F > f. What happens if F < f: i.e., if the applied force F is less than the frictional force f? In this case, common sense suggests that the block simply remains at rest (it certainly does not accelerate backwards!). Hence, f = µmg is actually the maximum force which friction can generate in order to impede the motion of the block. If the applied force F is less than this maximum value then the applied force is canceled out by an equal and opposite frictional force, and the block remains stationary. Only if the applied force exceeds the maximum frictional force does the block start to move.

Consider a block of mass m sliding down a rough incline (coefficient of friction µ) which subtends an angle Ɵ to the horizontal, as shown in Fig 1. The weight mg of the block can be resolved into components mgcos Ɵ, acting normal to the incline, and mgsin Ɵ, acting parallel to the incline. The reaction of the incline to the weight of the block acts normally outwards from the incline, and is of magnitude mgcos Ɵ. Parallel to the incline, the block is subject to the downward gravitational force mgsin0, and the upward frictional force f (which acts to prevent the block sliding down the incline). In order for the block to move, the magnitude of the former force must exceed the maximum value of the latter,

f

mg W

Figure 1: Friction which is µ time the magnitude of the normal reaction, or µmg cos 0. Hence, the condition for the weight of the block to overcome friction, and, thus, to cause the block to slide down the incline, is

> (3.)

R

F

3

or

tan > µ. (4.)

In other words, if the slope of the incline exceeds a certain critical value, which depends on µ, then the block will start to slide. Incidentally, the above formula suggests a fairly simple way of determining the coefficient of friction for a given object sliding over a particular surface. Simply tilt the surface gradually until the object just starts to move: the coefficient of friction is simply the tangent of the critical tilt angle (measured with respect to the horizontal).

As the angle of an inclined plane (i.e., ramp) is raised, at some critical angle called the angle of repose, an object placed on the inclined plane will just start to slide down the plane at a constant speed (i.e., zero acceleration). At the angle of repose, the coefficient of friction between the object and the plane equals the height of the ramp divided by the base of the ramp.

Up to now, we have implicitly suggested that the coefficient of friction between an object and a surface is the same whether the object remains stationary or slides over the surface. In fact, this is generally not the case. Usually, the coefficient of friction when the object is stationary is slightly larger than the coefficient when the object is sliding. We call the former coefficient the coefficient of static friction, , whereas the latter coefficient is usually termed the coefficient of kinetic (or dynamical) friction, . The fact that > simply implies that objects have a tendency to "stick" to rough surfaces when placed upon them. The force required to unstick a given object, and, thereby, set it in motion, is times the normal

Figure 2: Block sliding down a rough slope

reaction at the surface. Once the object has been set in motion, the frictional force acting to impede this motion falls somewhat to µk times the normal reaction.

When a = 0.0 m/s2, the force probe measures the force necessary to counteract friction and thus is equal to . If the block is pulled at constant velocity, starting from rest, there is a “bump” at the beginning of the graph, and the remaining graph is, on average, horizontal. The bump at the beginning of the graph is a result of

mg cosƟ

4

overcoming the maximum static friction, which is usually greater than kinetic friction, . The maximum value of this bump allows us to determine . The horizontal portion of the graph, , allows us to determine . A sketch of how your graph should look is shown in Fig. 3. Note that the force begins at zero newtons.

Figure 3: Sample Force vs. Time graph

Read University Physics Volume 1 Chapter #6: APPLICATIONS OF NEWTON'S LAWS Angle of friction

PART ONE: Coefficient of Friction and Angle of Repose MATERIALS

1. The meter stick (e.g., a yardstick with a metric scale on one side).

2. A clothes button.

3. A coin.

4. A wooden toothpick.

PROCEDURE

1. Place the meter stick on the floor or a table.

2. Place a coin on the meter stick and slowly tilt the meter stick, increasing the angle slowly. When the coin just starts to slide down the meter stick at a constant speed, measure how high the edge of the meter stick is above the ground or table.

3. Enter your data to the data table.

4. Perform this experiment 5 times with each object.

Note: The wooden toothpick should slide lengthwise (i.e., not roll) down the meter stick.

https://mech.subwiki.org/wiki/Angle_of_friction
5

DATA ANALYSIS

1. Calculate the mean of the height for each object. Enter your result to data table.

2. Using your measurement data, calculate the standard deviation of the height for each object.

3. Calculate the relative error of your measurement of the height for each object.

4. Measure the mass of the coin, a wooden toothpick and s clothes button (in

the internet find the mass of the object you are using).

5. Drawing and using the free-body diagram solution method, derive the equation for T for an object of mass m being slide an incline (✓ > 0_) at a constant velocity. Set the coordinate system such that the x-axis is parallel to the incline.

6. Using the Pythagorean Theorem, the length of a meter stick and the measured height of the edge of the meter stick when each object just started to slide, calculate the base of the ramp for each object.

7. Using the result that the coefficient of friction at the angle of repose equals the ratio of the height of the ramp divided by the base of the ramp, calculate the coefficient of friction for the button, the coin and the wooden toothpick.

8. Find on the internet or in a library (e.g., the CRC Handbook of Chemistry and Physics) the ranges of coefficients of friction expected for wood on wood, plastic on wood, metal on wood (or vice versa). 9. Calculate the percent error of your experimental result. PART TWO

We going to use the online simulation which represents two blocks connected by a string, where one block is located on the table and another block is hanging from the table. The simulation allows changing mass of each of the blocks as well as the coefficient of friction between the block and the table. Try various values for masses and friction coefficients (changing the “Type of Surfaces”), see what happens.

PROCEDURE DATA ANALYSIS

1. Change the mass of each of the blocks seven times. 2. Record your data on the Data Table. 3. For each combination of the mass change the coefficient of friction

between the block and the table three times. 4. Record your data on the Data Table. 5. Consider the block being pulled horizontally at a constant velocity. Derive

the equation of force, in terms of the following quantities: m, g, μ, Ɵ. 6. Calculate the acceleration as you change the mass of each of the blocks as

well as the coefficient of friction how acceleration of the system changes as you change these variables.

http://www.thephysicsaviary.com/Physics/Programs/Labs/ForceFriction/index.html
6

7. From the Graph in the online simulation in your experiment determine , , and .

INTRODUCTION
MATERIALS
PROCEDURE
DATA ANALYSIS
PROCEDURE DATA ANALYSIS

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Assignment Hub
Quick Mentor
Accounting & Finance Specialist
Top Essay Tutor
Top Quality Assignments
Helping Engineer
Writer Writer Name Offer Chat
Assignment Hub

ONLINE

Assignment Hub

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$45 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$46 Chat With Writer
Accounting & Finance Specialist

ONLINE

Accounting & Finance Specialist

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$35 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$28 Chat With Writer
Top Quality Assignments

ONLINE

Top Quality Assignments

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$21 Chat With Writer
Helping Engineer

ONLINE

Helping Engineer

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$19 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Planned road closures lincolnshire - Ivf formula drops per minute - Create a flyer in word assignment - Amu math 110 week 7 test answers - Pt qld gov au unclaimed money - Walk your way to fitness mayo clinic pdf - Social media and isolation essay - American cyclopaedia dark ages - Ali macgraw tv series - Pasco electric field mapping lab - Wk1 discussion 100820 - One way design psychology - The working poor invisible in america sparknotes - The cranes by peter meinke summary - Everything begins and ends at the kentucky club summary - Wgu c229 time log obesity - Choose 2 questions- religion (instructions are attached) - Canal and river trust licence - Dicussion ( Management Concepts) Week 10 - Siemens sirius contactor manual - Product life cycle of domino's pizza - How to stop contentkeeper - Dennis bellamy halls bradford - Prejudice and Discrimination - Social Issue as the Behaviorist Sees It - 905 donnybrook road donnybrook - Peer Response - Is walmart an international business - Biodiversity paper - How to calculate euac in excel - The worksheet for booth company shows the following in the financial statement columns: - Humpty dumpty bungee jumped - Temperate grassland cold desert - Help Needed - General adaptation syndrome theory - How do you find the area of a regular octagon - Types of hazards in caregiving - Isolation of asa from aspirin tablet - 7 reid walk macleod - Riba quality management system procedures manual - Alabama tombigbee area agency on aging - How to compute single trade discounts - Sir robert geffery's school - Ductile damage abaqus example - Assessment 3: Digital Forensic Report This document supplies detailed information on assessment tasks for this unit. - Homework - Marketing Plan - Week 3 Project - Milestone 2 - 45 stonier road ross creek - Cyclohexene and bromine in ch2cl2 - What is chocolate rain about - Short circuit capacity 3871 type 2 - Here is the summary of our meeting - Stitt feld handy negotiation simulations - What are social science issues - The ransom of mercy carter chapter summaries - Dulux metalshield data sheet - What is the irac method - Self leveling cement canadian tire - Create poster - Dan gilbert the surprising science of happiness transcript - Eduardo repetto net worth - Tim winton big world analysis - Expansion strategy and establishing a reorder point excel - Pallavi singhal - Consider the following segment table - 15 5 mastery problem accounting answers - Help! - Hatchet chapter 17 summary - Big bang theory astrophysics - Sql stands for in computer - What are the key components of the offense cycle - All i wanna do is make love to you meaning - Falls risk assessment template - P 1 2mv 2 - Remington 1187 action spring removal - Research paper - Professional nursing practice concepts and perspectives 7th edition apa citation - Due Deligence - CMGT - Sulfamic acid grout cleaner home depot - Tfc tvc tc afc avc atc mc table - Concept analysis paper - How to measure rate of photosynthesis in aquatic plants - Nbn multi dwelling units - Human brain clay model - IAH-207-733 (W7) - On History & Identity (250 Words) - Otis elevator case study pdf - Discuss the effectiveness of red bull sponsorships - Marketing - Week 2 Marketing Management - Nutr1023 - Forwarder receiver design pattern - Philosophy the quest for truth 9th edition - Volk super vitreo fundus lens - Accounting for the intel pentium chip flaw case solution - Power Point - Chemistry - Meditech surgical case study