Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Gas properties simulation

09/01/2021 Client: saad24vbs Deadline: 10 Days

Gas Properties Simulation Activity


In this activity you’ll use the Gas Properties PhET Simulation


(https://phet.colorado.edu/en/simulation/gas-properties) to explore and explain the relationships


between energy, pressure, volume, temperature, particle mass, number, and speed.


This activity has 5 modules:


○ Explore the Simulation


○ Kinetic Energy and Speed


○ Kinetic Molecular Theory of Gases


○ Relationships between Gas Variables


○ Pressure and Mixtures of Gases


You will get the most out of the activity if you do the exploration first! The rest of the sections


can be worked in any order; you could work on any sections where you want to deepen your


conceptual understanding.


Part I: Explore the Simulation


Take about five minutes to explore the sim. Note at least two relationships that you observe and


find interesting.


https://phet.colorado.edu/en/simulation/gas-properties

Part II: Kinetic Energy and Speed


Sketch and compare the distributions for kinetic energy and speed at two different temperatures


in the table below. Record your temperatures (T1 and T2), set Volume as a Constant Parameter,


and use roughly the same number of particles for each experiment (aim for ~100-200). Use the


T2 temperature to examine a mixture of particles.


Tips:


T1 = __________K The Species Information and Energy Histograms tools will help.


T2 = __________K The system is dynamic so the distributions will fluctuate.


Sketch the average or most common distribution that you see.


“Heavy” Particles Only “Light” Particles Only Heavy + Light Mixture


# of particles


(~100-200)


Kinetic


Energy


Distribution


sketch for T1


Speed


Distribution


sketch for T1


Kinetic


Energy


Distribution


sketch for T2


Speed


Distribution


sketch for T2


1. Compare the kinetic energy distributions for the heavy vs. light particles at the same


temperature. Are these the same or different? What about the speed distributions?


2. Compare the kinetic energy distributions for the heavy vs. light particles at different


temperatures. Are these the same or different? What about the speed distributions?


3. Compare the kinetic energy distributions for the mixture to those of the heavy-only and light-


only gases at the same temperature. Are these the same or different? What about the speed


distributions?


4. Summarize your observations about the relationships between molecular mass (heavy vs.


light), kinetic energy, particle speed, and temperature.


Part III: Kinetic Molecular Theory (KMT) of Gases


Our fundamental understanding of “ideal” gases makes the following 4 assumptions.


Describe how each of these assumptions is (or is not!) represented in the simulation.


Assumption of KMT Representation in Simulation


1. Gas particles are separated by


relatively large distances.


2. Gas molecules are constantly in


random motion and undergo


elastic collisions (like billiard


balls) with each other and the


walls of the container.


3. Gas molecules are not attracted


or repulsed by each other.


4. The average kinetic energy of


gas molecules in a sample is


proportional to temperature (in K).


Part IV: Relationships Between Gas Variables


Scientists in the late 1800’s noted relationships between many of the state variables related to


gases (pressure, volume, temperature), and the number of gas particles in the sample being


studied. They knew that it was easier to study relationships if they varied only two parameters at


a time and “fixed” (held constant) the others. Use the simulation to explore these relationships.


Variables Constant Parameters Relationship Proportionality


(see hint below)


pressure, volume directly proportional


or


inversely proportional


volume, temperature directly proportional


or


inversely proportional


volume, number of


gas particles


directly proportional


or


inversely proportional


Hint: A pair of variables is directly proportional when they vary in the same way (one increases


and the other also increases). A pair of variables is inversely proportional when they vary in


opposite ways (one increases and the other decreases). Label each of your relationships in the


table above as directly or inversely proportional.


Part V: Pressure and Mixtures of Gases


The atmosphere is composed of many gases in different ratios, and all of them contribute to the


total atmospheric pressure. Use the simulation to explore this relationship by testing


combinations of heavy and light gases.


For each Test #, record your measurement and the make the prediction before moving on to the


next row of the table.


Test


#


Pressure


Measurement


Pressure Prediction


(greater than, equal to, less than, twice as much, half as much, etc)


1 100 Light particles =


Pressure for 100 Heavy Particles will be __________________


the pressure from Test #1.


2 100 Heavy particles =


Pressure for 200 Heavy particles will be __________________


the pressure from Test #2.


3 200 Heavy particles = Pressure for 100 Light AND 100 Heavy particles will be


__________________ the pressure from Test #3


4 100 Heavy + 100


Light particles =


Pressure for 200 Heavy AND 100 Light particles will be


__________________ the pressure from Test #4.


5 200 Heavy + 100


Light particles =


Pressure for 150 Heavy AND 50 Light particles will be


__________________ the pressure from Test #5.


6 150 Heavy + 50 Light


particles =


Write your own prediction:


1. For Test 6 (150 Heavy + 50 Light particles), what is the pressure contribution from the heavy


particles (Pheavy)? How did you figure this out?


2. What is the pressure contribution from the light particles (Plight)? How did you figure this


out?


3. For each test above, calculate the mole fraction of each gas (number of particles of that type /


total particles). Find a relationship between the mole fraction and the pressure contribution of


each type of gas.


4. The atmosphere is composed of about 78% nitrogen, 21% oxygen, and 1% argon. Typical


atmospheric pressure in Boulder, Colorado is about 0.83 atm. What is the pressure contributed


by each gas?

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Best Coursework Help
University Coursework Help
Top Essay Tutor
Helping Hand
Writer Writer Name Offer Chat
Best Coursework Help

ONLINE

Best Coursework Help

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$100 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$102 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

I have more than 12 years of experience in managing online classes, exams, and quizzes on different websites like; Connect, McGraw-Hill, and Blackboard. I always provide a guarantee to my clients for their grades.

$105 Chat With Writer
Helping Hand

ONLINE

Helping Hand

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$100 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Jeannette walls real family pictures - Executive Program Practical Connection Assignment - 7 eleven application form - Tic tac sugar free chill mints - Lloyd ackert drexel - Annotated Bibliography for Persuasive Speech - Cal poly pomona ethnic breakdown - Whose “political gospel” inspired the framers to adopt the concept of the separation of powers? - For the standard normal curve, find the z-score that corresponds to the 7th decile. - 1 db to watt - University of applied sciences upper austria tuition fees - Like many renaissance composers josquin wrote two kinds of music - LEG 500 Discussion week 2 - International Trade - Namo tassa bhagavato arahato samma sambuddhassa mp3 song - WK 5 SOCW 6443 Assignment: Considering Alternative Treatment Options for Anxiety Disorders - NEED IN 18 HOURS or LESS - Buzzfeed can you solve this mystery snapchat - Built with science review - Red ted reading scheme - Discussion 4.2 - Nicola elliott neom net worth - Disney junior hd fios - Learning style inventory k 2 - Ati the communicator clients displaying aggressive behavior - Football acrostic poem examples - Response - 100000 in word form - Imeche code of conduct - Case Study 1: The Officer and the Drug Arrest - What is the ba and ka - Why does 45 degrees maximum range - Deni preston total body workout - How to solve exponential inequalities with different bases - Sebastian burns jimmy miyoshi - Blockhead the life of fibonacci - Do food safety assessment answers - Oil spill lab report - Calculate the absolute value of the test statistic for b1 - Aged care police checks requirements - Progress Note - Sir robert peel's 9 principles of policing - Avenham health centre contraception - Iso 9001 2015 risk based thinking - Australian unity mid hospital - Significance of roses in american beauty - Blake and mouton grid questionnaire - Foxboro imt 20 manual - Decisions - Carolina biological supply company karyotype answers - Knowledge Discovery and Reporting for Businesses - Hbs custodian pty limited - Rosco p coltrane cuff em and stuff em - Drawing on the right side of the brain - Love after love meaning - How to write a special occasion speech - Hyatt regency hotel disaster - The black balloon charlie - St james episcopal church warrenton va - Big Data analytist - Power circuit theory uts - Tarra bulga national park walks - Plan view piping drawings - Joe floyd sioux falls sd - Rotational dynamics problems mastering physics - Lloyd's syndicate pseudonym list - Apply the service profit chain concept to airbnb - Speech outline template for kids - Business Valuation Discussion Post - Australian pigeon company products - Starbucks campbellsville ky - Discussion 2 (health policy law) - Chapter 7 – study questions 1-10, Exercise 2 ( from Information Systems for Business and Beyond textbook) Chapter 8- study questions 1-10, Exercise 2 ( from Information Systems for Business and Beyond textbook) - Final Project - American idol analysis - Identifying common and proper nouns in a paragraph - Comparison and contrast essay between two countries - Court cards in playing cards - Excessive ripple alternator definition - Microscopy microbiology lab report - Vroom leadership theory - Marriott corporation case study solution - Anderson greenwood 81 series relief valve - Biointeractive lizard evolution virtual lab answers - Ligation of an intraoral salivary duct cpt code - Factorise x2 3x 2 - Discussion Topic - Noughts and crosses blurb - 4.05 the great depression - Conan o brien in the year 2000 - Critical analysis of the strategic leadership of a company - P1 - Child of the americas by aurora levins morales - Velocity of an electron through a potential difference - HR case study - Denmark vesey quotes - Led beer pong table - Synthesis of metal acetylacetonate complexes lab - Wk6 assign 6053 - Hid proxpoint plus 6005 wiring diagram