Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Gizmo feel the heat answer key

22/11/2021 Client: muhammad11 Deadline: 2 Day

Student Exploration: Calorimetry Lab

Vocabulary: calorie, calorimeter, joule, specific heat capacity

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. The Latin word calor means “heat,” and meter comes from the Greek word meaning “to measure.” What do you think a calorimeter does? A calorimeter allows you to measure physical properties of materials such as specific heat or heat of fusion.

2. Where have you heard the word calorie before? What do you think a calorie is? I hear it all the time because my mom is always talking about calorie all the time. A calorie is a unit of energy. In nutrition and everyday language, calories refer to energy consumption through eating and drinking and energy usage through physical activity. For example, an apple may have 80 calories, while a 1 mile walk may use up about 100 calories.

image6.jpg

Gizmo Warm-up

A calorimeter is an insulated container filled with a liquid, usually water. When a hot object is placed in the calorimeter, heat energy is transferred from the object to the water and the water heats up.

Calorimeters can be used to find a substance’s specific heat capacity. You will use the Calorimetry Lab Gizmo™ to determine the specific heat capacities of various substances.

1. On the SIMULATION pane, select Copper. Use the slider to set its Mass to 200 g. Set the Water mass to 200 g. Check that the Water temp is set to 30.0 °C and the copper’s Temp is 90 °C. Select the GRAPH tab, and click Play (image8.png).

A. What was the Final temperature of the copper and the water? 34.96*C

B. How much did the temperature of the copper change? ________________________

C. How much did the temperature of the water change? _________________________

2. Specific heat capacity can be described as a substance’s resistance to temperature changes. Which substance has a greater specific heat capacity, copper or water? Explain.

_________________________________________________________________________

_________________________________________________________________________

Activity A:

Heat transfer

Get the Gizmo ready:

· Click Reset (image2.jpg).

image3.jpg

Question: What factors determine how heat energy transfers between objects?

1. Predict: In the Gizmo warm-up, you saw how 200 g of 90 °C copper transfers heat to 200 g of 30.0 °C water.

A. How do you think increasing the water’s mass would affect the final temperature?

Heat capacity is a measurable physical quantity that characterizes the amount of heat that is required to change a body's temperature by a given amount. The larger the amount of water, the higher the heat capacity.

B. How do you think decreasing the copper’s mass would affect the final temperature? The amount of heat energy (q) gained or lost by a substance is equal to the mass of the substance (m) multiplied by its specific heat capacity (Cg) multiplied by the change in temperature (final temperature - initial temperature) q = m x Cg x (Tf - Ti)

C. How do you think increasing or decreasing the copper’s initial temperature would affect the final temperature? ____________________________________________

___________________________________________________________________

2. Collect data: Use the Gizmo to determine the final temperature for each set-up listed below. Record your results in the tables. In the first table, you experiment with changing the water’s mass. In the second table, you change the copper’s mass. In the third table, you change the initial temperature of the copper. The first row of each table has been completed for you.

Copper

Water

Final Temp. (°C)

Initial Temp. (°C)

Mass (g)

Initial Temp. (°C)

Mass (g)

90 °C

200 g

30.0 °C

200 g

34.96 °C

90 °C

200 g

30.0 °C

2,000 g

30.54*C

90 °C

200 g

30.0 °C

200 g

34.96 °C

90 °C

20 g

30.0 °C

200 g

30.54*C

90 °C

200 g

30.0 °C

200 g

34.96 °C

100 °C

200 g

30.0 °C

200 g

35.79*C

50 °C

200 g

30.0 °C

200 g

31.65*C

(Activity A continued on next page)

Activity A (continued from previous page)

3. Analyze: For each factor listed in the chart below, explain how the final temperature was changed and why you think that change occurred.

A. What was the effect of increasing the water’s mass? Increasing mass will increase the substance’s heat, but won’t affect its temperature since they are not reated.

B. What was the effect of decreasing the copper’s mass? Corrosion of copper-based alloys is influenced by different factors; temperature oxygen concentration, chloride, sulfate, organics. Etc.

C. What was the effect of changing the initial temperature of the copper? ___________

___________________________________________________________________

___________________________________________________________________

4. Draw conclusions: The amount that the water’s temperature increases depends on the mass of the water and the amount of heat energy in the copper.

A. How does changing the initial mass of the copper affect how much heat energy it has? The amount of heat energy (q) gained or lost by a substance is equal to the mass of the substance (m) multiplied by its specific heat capacity (Cg) multiplied by the change in temperature (final temperature - initial temperature) q = m x Cg x (Tf - Ti)

B. How does changing the initial temperature of the copper affect how much heat energy it has? _______________________________________________________

___________________________________________________________________

5. Apply: Many gyms and health clubs have steam saunas, which are small steam-filled rooms. Traditionally, steam saunas have a container of heated rocks. A small ladle of water is poured on the rocks in order to make the steam.

A. Use what you have learned so far about heat transfer to explain how hot rocks can be used to make steam? As air becomes more humid, it transfers heat more efficiently. If you had a sauna stove that was large enough to immediately vaporize a bucket full of water, you could cause serious burns to your skin.

Why do you think only a small ladle-full of water is poured on the rocks at one time? The heat of vaporization of water is very high. With small amounts of water you can vaporize the water as it hits the rocks into steam. With larger amounts of water, the outside surface of the rocks will be cooled, and it will heat the water more slowly making the vaporization take place over a longer period of time.

Activity B:

Specific heat

Get the Gizmo ready:

· Click Reset.

· Deselect Copper, and select Granite.

image4.jpg

Question: How can you compare the specific heat capacities of various substances?

1. Explain: How do you think you can use the calorimeter to compare the specific heat capacities of the substances listed on the Gizmo? _________________________________

_________________________________________________________________________

_________________________________________________________________________

2. Predict: Which substance do you think will have the highest specific heat capacity? Why?

The specific heat capacity of a substance is the amount of heat required to raise the temp of a substance by 1 degree C. So the higher the heat capacity the less hot it gets. For example, metals have a low heat capacity and granite would have a relatively high one.

3. Experiment: Use the Gizmo to determine the final temperature for each set-up listed below. Record your results in the table. The first row has been completed for you.

Substance

Substance initial temp. (°C)

Substance mass

Water initial temp. (°C)

Water mass

Final temp. (°C)

Copper

90 °C

200 g

30.0 °C

200 g

34.96 °C

Granite

90 °C

200 g

30.0 °C

200 g

39.59*C

Lead

90 °C

200 g

30.0 °C

200 g

31.75*C

4. Analyze: Of the three substances, which caused the largest temperature change in the water? What does this indicate about its relative specific heat capacity? ________________

_________________________________________________________________________

5. Interpret: Remember that specific heat capacity is a measure of a substance’s resistance to temperature change. The more resistant a substance is to temperature change, the higher is its specific heat capacity.

Rank the three substances in order of their specific heat capacities, from highest to lowest.

_________________________________________________________________________

(Activity B continued on next page)

Activity B (continued from previous page)

6. Predict: How do you think the specific heat capacity of ice will compare to that of copper, granite, and lead? __________________________________________________________

_________________________________________________________________________

7. Experiment: Deselect Lead, and select Ice. Use the default values for Temp (-30 °C) and Mass (50 g). Set the Water temp to 60 °C and the Water mass to 200 g. Click Play.

A. What was the final temperature? _________________________________________

B. What do you think is happening when the ice line on the graph is at 0 °C for a long period of time? Why do you think the line disappears after that? ________________

___________________________________________________________________

C. How much of a temperature change did the water experience? _________________

D. How does this change in the water’s temperature compare to the change caused by the other substances you tested? ________________________________________

8. Extend your thinking: A lot of energy is needed to heat a substance with a high specific heat capacity. However, even more energy is needed to cause a phase change (such as the melting of ice). Click Reset. Set the ice’s Temp to -100 °C and its Mass to 50 g. Set the Water temp to 50 °C and Water mass to 200 g. Click Play.

A. What was the final temperature? _________________________________________

B. Do you think all the ice melted? Explain. ___________________________________

___________________________________________________________________

C. Look at the GRAPH. The graph shows two separate stages: the heating of the ice and then the melting of the ice. How much did the water’s temperature change while the ice was heating? How much did it change while the ice was melting?

___________________________________________________________________

___________________________________________________________________

D. How did this experiment demonstrate ice’s high specific heat capacity? __________

___________________________________________________________________

___________________________________________________________________

Activity C:

Calculating specific heat

Get the Gizmo ready:

· Click Reset.

image5.jpg

Introduction: The specific heat capacity of a substance is the amount of energy needed to change the temperature of that substance by 1 °C. Specific heat capacity can be calculated using the following equation:

q = mc∆T

In the equation q represents the amount of heat energy gained or lost (in joules), m is the mass of the substance (in grams), c is the specific heat capacity of the substance (in J/g °C), and ∆T is the temperature change of the substance (in °C).

Goal: Calculate the specific heat capacities of copper, granite, lead, and ice.

1. Solve: When you mix two substances, the heat gained by one substance is equal to the heat lost by the other substance. Suppose you place 125 g of aluminum in a calorimeter with 1,000 g of water. The water changes temperature by 2 °C and the aluminum changes temperature by –74.95 °C.

A. Water has a known specific heat capacity of 4.184 J/g °C. Use the specific heat equation to find out how much heat energy the water gained (q).

___________________________________________________________________

B. Assume that the heat energy gained by the water is equal to the heat energy lost by the aluminum. Use the specific heat equation to solve for the specific heat of aluminum. (Hint: Because heat energy is lost, the value of q is negative.)

___________________________________________________________________

Aluminum’s accepted specific heat value is 0.900 J/g °C. Use this value to check your work.

2. Calculate: Use the Gizmo to mix 200 g of copper at 100 °C with 1,000 g of water at 20 °C.

A. What is the final temperature? ___________________________________________

B. Calculate the temperature change of each substance by subtracting the initial temperature from the final temperature.

∆Twater: __________ ∆Tcopper: __________

C. How much heat energy (q) did the water gain? ______________________________

D. Now solve for the specific heat (c) of copper: _______________________________

(Activity C continued on next page)

Activity C (continued from previous page)

3. Calculate: Use the Gizmo to mix 200 g of granite at 100 °C with 1,000 g of water at 20 °C.

A. What is the final temperature? ___________________________________________

B. Calculate the temperature change of each substance by subtracting the initial temperature from the final temperature.

∆Twater: __________ ∆Tgranite: __________

C. How much heat energy (q) did the water gain? ______________________________

D. Now solve for the specific heat (c) of granite: _______________________________

E. Repeat steps A through D to find the specific heat (c) of lead: __________________

4. Challenge: Use the specific heat capacity that you calculated for granite to determine how many grams of granite at the initial temperature of 80 °C must mix with 3,000 g of water at the initial temperature of 20 °C to result in a final system temperature of 20.45 °C. (Hint: Start by calculating how much heat energy is needed to change the water’s temperature by 0.45 °C). Show your work. Use the Gizmo to check your answer.

Mass of granite = __________

5. Extend your thinking: In addition to calculating specific heat capacities, some calorimeters can be used to determine how much energy is in food. The energy in food is usually expressed in calories or kilocalories (Calories). A calorie is the amount of energy needed to change the temperature of 1 g of water by 1 C. There are 1,000 calories in a Calorie.

A. How many joules are in 1 calorie? (The specific heat of water is 4.184 J/g °C.) ___________________________________________________________________

B. Suppose a snack bar is burned in a calorimeter and heats 2,000 g water by 20 °C. How much heat energy was released? (Hint: Use the specific heat equation.) Give your answer in both joules and calories.

___________________________________________________________________

C. How many kilocalories (Calories) does the snack bar contain? __________________

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

High Quality Assignments
Solutions Store
Unique Academic Solutions
Professional Coursework Help
Phd Writer
Top Quality Assignments
Writer Writer Name Offer Chat
High Quality Assignments

ONLINE

High Quality Assignments

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$34 Chat With Writer
Solutions Store

ONLINE

Solutions Store

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$41 Chat With Writer
Unique Academic Solutions

ONLINE

Unique Academic Solutions

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$16 Chat With Writer
Professional Coursework Help

ONLINE

Professional Coursework Help

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$38 Chat With Writer
Phd Writer

ONLINE

Phd Writer

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$39 Chat With Writer
Top Quality Assignments

ONLINE

Top Quality Assignments

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$39 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Ped pressure vessel code - The gambler who blew $127 million - Longchamp hong kong price 2018 - Essay body paragraphs - Speech topic - Personal branding assignment - Holes chapter questions and answers pdf - A study on capital budgeting - In the pond ha jin sparknotes - Nursing Leadership - Cost accounting test bank chapter 2 - Object line definition engineering - The power of chunking - Http www apa org pubs databases psycinfo index aspx - Project - Hilton seskin net worth - Report Non Metallic Process - Which direction is east on the flat sky map - Tone at the top memo examples - Responsorial psalm wedding i have loved you - 1311 hetfield ave scotch plains - CPSC 355 Assignment 3 - Jason robert bourque and daniel george mcallister - Haddon matrix example - Baddeley and hitch working memory model - Sociology - Biology data analysis questions - Wjec physics equation sheet - Liking is for cowards go for what hurts analysis - Fearless planet grand canyon worksheet - International trade case studies with questions - Types of staffing policy - Influenza vaccination campaign essay - Pledge of allegiance adopted by congress - Describe your favourite book - Gilbert and martin experimental organic chemistry - June 2007 maths a level mark scheme - 6 steps of accounting cycle - Waves on a string phet lab answers - Stage 1 pdhpe lesson plans - Assume the following information about the market and jumpmasters stock - Eastland ice skating rink - Rolls-royce silver spirit wiring diagrams - 50.2 kg in stone - Charles ng baby oven - Fin 370 precision machines part 2 - 7 1 final project submission presentation to investors assignment - The opportunity cost of going to college is - Discovery education math techbook - Bsbrsk501 manage risk assessment task 1 - Data Science and Big Data - Impulse conducting cell crossword - Managerial accounting - St francis school goosnargh - Wk7 DQ1 Discussion Question 1 – CLO 5 - Lock service 3g power opentoken - 1z0 071 exam dumps - Common anode 7 segment display circuit - Nanomaterials ppt presentation download - A tow truck pulls a car 5.00 km - Mohammed hassan yalla and sons exchange riyadh - Mintzberg managerial roles ppt - The most important person in my life essay father - The dangerous morality of managing earnings - Industrial engineering and operations research - The bullard houses negotiation case seller - Slumdog millionaire paper planes scene - Juniper ssg 320m end of life - Child development theorists cheat sheet - Resistors in series worksheet - Steve carlesi cause of death - Famous building in vietnam - Aa bb cc abc - Essay - Webography - Romeo and juliet plot line - Preparation of service equipment - Wedding planner project report - History answers to all questions - Screening of breast cancer - The five p's of nursing - In an assembly operation at a furniture factory - History of education in the philippines - Tudor houses for children - Diagnostic tools in computer hardware servicing - In some countries, camphor may be placed in a pouch and pinned to clothing to treat: - The fun they had activities - Isaac physics pre university answers - Ross martin arrived at the following tax information: - Powerpoint presentation on stress management in the workplace - Structural strain theory of social movement - Informative message examples - Computer scavenger hunt answers - Canadian Human Resource Management - When a firm is experiencing diseconomies of scale - English - List of polyprotic acids - Waverley council clean up - What is the staffing policy that lenovo is pursuing - Features of discursive writing