EXPERIMENT NO. 1Resistor Color CodeObjectiveThe objective of this exercise is to become familiar with the measurement of resistance values using a digital multimeter(DMM). A second objective is to learn the resistor color code. Theory OverviewTheresistor is perhaps the most fundamental of all electrical devices. Its fundamental attribute is the restriction of electrical current flow: The greater the resistance, the greater the restriction of current. Resistance is measured in Ohms. The measurement of resistance in unpowered circuits may be performed with a digital multimeter. Like all components, resistors cannot be manufactured to perfection. That is, there will always be some variance of the true value of the component when compared to its nameplate or nominal value. For precision resistors, typically 1% tolerance or better, the nominal value is usually printed directly on the component. Normally, general purpose components, i.e. those worse than 1%, usually use a color code to indicate their value. The resistor colorcodetypically uses4 color bands. The first two bands indicate the precision values (i.e. the mantissa) while the third band indicates the power of ten applied (i.e. the number of zeroes to add). The fourth band indicates the tolerance. It is possible to find resistors with five or six bands but they will not be examined in this exercise. Examples are shown below:It is important to note that the physical size of the resistor indicates its power dissipation rating, not its ohmic value.Each color in the code represents a numeral. It starts with black and finishes with white, going through the rainbow in between:0 Black1 Brown2 Red3 Orange4 Yellow5 Green6 Blue7 Violet8 Gray9 WhiteFor the fourth, or tolerance, band:5% Gold10% Silver20% None
For example, a resistorwith the color code brown-red-orange-silver would correspond to 1 2 followed by 3 zeroes, or 12,000 Ohms (more conveniently, 12 kOhms). It would have a tolerance of 10% of 12 kOhms or 1200Ohms. This means that the actual value of any particular resistor with this code could be anywhere between 12,000-1200=10,800, to 12,000+1200=13,200. That is, 10.8 k to 13.2 k Ohms.Note, the IEC standard replaces the decimal point with the engineering prefix, thus 1.2 k is alternately written 1k2.Similarly, a 470 k 5% resistor would have the color code yellow-violet-yellow-gold. To help remember the color code many mnemonics have been created using the first letter of the colors to create a sentence. One example isthe picnic mnemonicBlack Bears Robbed Our Yummy Goodies Beating Various Gray Wolves.Measurement of resistors with a DMM is a very straight forward process. Simply set the DMM to the resistance function and choose the first scale that is higher than the expected value. Clip the leads to the resistor and record the resulting value. Equipment(1) Digital Multimeterserial number:__________________Procedure1.Given the nominal values and tolerances in Table 3.1, determine and record the corresponding color code bands.2.Given the color codes in Table 3.2, determine and record the nominal value, tolerance and the minimum and maximum acceptable values.3.Obtain a resistor equal to the first value listed in Table 3.3. Determine the minimum and maximum acceptable values based on the nominal value and tolerance. Record these values in Table 3.3. Using the DMM, measured the actual value of the resistor and record it in Table 3.3. Determine the deviation percentage of this component and record it inTable 3.3. The deviation percentage may be found via: Deviation = 100 * (measured-nominal)/nominal. Circle the deviation if the resistor is out of tolerance.4.Repeat Step 3 for the remaining resistor in Table 3.3.Data Tables