Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Holy cow sarah macdonald sparknotes

17/11/2021 Client: muhammad11 Deadline: 2 Day

Write A Python Code On The Anaconda Navigator

Resource Information
In this assignment, you should work with books.csv file. This file contains the detailed information about books scraped via the Goodreads . The dataset is downloaded from Kaggle website: https://www.kaggle.com/jealousleopard/goodreadsbooks/downloads/goodreadsbooks.zip/6

Each row in the file includes ten columns. Detailed description for each column is provided in the following:

bookID: A unique Identification number for each book.
title: The name under which the book was published.
authors: Names of the authors of the book. Multiple authors are delimited with -.
average_rating: The average rating of the book received in total.
isbn: Another unique number to identify the book, the International Standard Book Number.
isbn13: A 13-digit ISBN to identify the book, instead of the standard 11-digit ISBN.
language_code: Helps understand what is the primary language of the book.
num_pages: Number of pages the book contains.
ratings_count: Total number of ratings the book received.
text_reviews_count: Total number of written text reviews the book received.
Task
Write the following codes:
Use pandas to read the file as a dataframe (named as books). bookIDcolumn should be the index of the dataframe.
Use books.head() to see the first 5 rows of the dataframe.
Use book.shape to find the number of rows and columns in the dataframe.
Use books.describe() to summarize the data.
Use books['authors'].describe() to find about number of unique authors in the dataset and also most frequent author.
Use OLS regression to test if average rating of a book is dependent to number of pages, number of ratings, and total number of written text reviews the book received.
Summarize your findings in a Word file.
Instructions
Please follow these directions carefully.
Please type your codes in a Jupyter Network file and your summary in a word document named as follows:
HW6YourFirstNameYourLastName.

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python Basics (Instructor: Dr. Milad Baghersad)\n", "## Module 6: Data Analysis with Python Part 1\n", "\n", "- Reference: McKinney, Wes (2018) Python for data analysis: Data wrangling with Pandas, NumPy, and IPython, Second Edition, O'Reilly Media, Inc. ISBN-13: 978-1491957660 ISBN-10: 1491957662\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "___\n", "___\n", "___\n", "### review: Numpy (https://www.numpy.org/)\n", "NumPy, short for Numerical Python, is one of the most important foundational packages for numerical computing in Python.\n", "\n", "One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the\n", "equivalent operations between scalar elements." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "b = np.array([[ 0, 1, 2, 3, 4],\n", " [ 5, 6, 7, 8, 9],\n", " [10, 11, 12, 13, 14]])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b)\n", "type(b)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b.sum(axis=0)) # sum of each column" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.ones( (5,4) )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1)\n", "np.random.rand(4,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "---\n", "---\n", "# pandas (https://pandas.pydata.org/)\n", "\n", "- Developed by Wes McKinney.\n", "- pandas contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python.\n", "- While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. \n", "- NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n", "- Can be used to collect data from different sources such as Yahoo Finance!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data = np.random.rand(4,2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### change the array to a pandas dataframe:\n", "A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df = pd.DataFrame(my_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign columns name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign rows name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"],index=['a', 'b', 'c', 'd'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#There are many ways to construct a DataFrame, though one of the most common is\n", "# from a dict of equal-length lists or NumPy arrays:\n", "data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],\n", " 'year': [2000, 2001, 2002, 2001, 2002, 2003],\n", " 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t = pd.DataFrame(data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#For large DataFrames, the head method selects only the first five rows:\n", "data_t.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you specify a sequence of columns, the DataFrame’s columns will be arranged in that order:\n", "pd.DataFrame(data, columns=['year', 'state', 'pop'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2 = pd.DataFrame(data, columns=['year', 'state', 'pop'])\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2.set_index('year',inplace=True)\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you pass a column that isn’t contained in the dict, it will appear with missing values in the result:\n", "data_t2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],\n", " index=['one', 'two', 'three', 'four', 'five', 'six'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#retrieving a column by dict-like notation \n",

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Top Class Engineers
Assignments Hut
Top Academic Tutor
Essay Writing Help
Ideas & Innovations
Coursework Assignment Help
Writer Writer Name Offer Chat
Top Class Engineers

ONLINE

Top Class Engineers

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$24 Chat With Writer
Assignments Hut

ONLINE

Assignments Hut

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$36 Chat With Writer
Top Academic Tutor

ONLINE

Top Academic Tutor

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$38 Chat With Writer
Essay Writing Help

ONLINE

Essay Writing Help

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$19 Chat With Writer
Ideas & Innovations

ONLINE

Ideas & Innovations

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$37 Chat With Writer
Coursework Assignment Help

ONLINE

Coursework Assignment Help

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$29 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

The warriner school teachers - Inténtalo textbook escribe el equivalente de las palabras en inglés - Adelaide aqua desalination plant - FORTRAN WITH ROMBERG INTEGRATION - Parenting a dynamic perspective 2nd edition pdf - Baron baptiste yoga sequence - Discussion(NCM) - African oral tradition and bible and the gun - Communications Journal Entry 1 - MARISSA JONES ONLY!!!! - Informational Technology For Entrepreneurs And Leaders - Access cost management data to determine a make or buy decision - Afbma bearing conversion chart - SElf Harm - Lincoln university banned advert - Completing the square laplace - Fire eye flame scanner manual - Management science - A storage tank contains a liquid at depth y - Criminal procedure discussion 9 - 2 2 dimethyl 1 butanol nmr - What is the magnitude f of the force - Kickoff PowerPoint Presentation: Week 1 - Inventory Control/Management Systems - Alzheimer - How to do a source analysis - Alice programming chapter 3 answers - John kotter's 8 step plan for implementing change - Understanding social problems mooney 9th edition pdf - Kerbin geostationary orbit calculator - C# multiple choice questions and answers - SOCS185N: Culture and Society - Blackhurst swainson goodier lancaster - The constant gardener scene - Participation requirements appointment centrelink - How to write an interview essay - Gunai kurnai language dictionary - First draft for systematic literature review - Hill brow residential care home ewshot farnham - Malcolm in the middle season 1 episode 16 - Reflection and Discussion Forum Week 7 - Response to Classmates Discussions - Discussion 25 - Assignment - Software products and technologies - The __________ on packages were intended to improve inventory control for businesses. - Ferguson v fct 1979 - Toyota usa automobile museum - Michael ymer professional development - V for vendetta gordon - Write the conditional statement that the venn diagram illustrates - Practical Connection Assignment - Information Governance - My topic person (Joesph M. Juran) - Work place violence - Describe three of the cobit p09 control objectives - Marc nachmann net worth - Assignment week7 - Zeise's salt ppt - How to properly apply proactive - Axe target market demographics - Bus Cont Plan&Disas Recov Plan (ISOL-632-A04) - Phd In Information Technology - Coca cola target segment - Write an equation for the function graphed below - Charlotte's web summary chapter 3 - Edu 100 week 5 journal - Limewater test for co2 equation - Roy vagelos attacks river blindness - Driving through sawmill towns analysis - Maebyeong bottles are a part of which nation cultural past? - Liquid water enters a kw pump - Institute of certified public accountants of singapore - Australian guide legal citation - Ucl economics entry requirements - If a reaction vessel contains mol ko - Celine dion company issued 600 000 - Ez pass boston ma - Southern cross insurance claim form - Human resource management discussion questions - If a toy rocket is launched vertically upward - Anticipatory set lesson plan example - What is bas excluded - Mgco3 s mgo s co2 g - Www stress org holmes rahe stress inventory - Apa formatted paper and PowerPoint presentation - English writing - Employee engagement team charter - Chevron lubricants sri lanka - The skills to succeed - Discussion question, 350 words and 2 references. - What fear can teach us answers - Assessment 2: - Leadership in Healthcare Organization Project - Dr lai fon min - Tom schriber a director of personnel of management resources - Need a research paper---Each que 2 pages of answer ---apa is not required. - Ap statistics chapter 1 test - A case study of domino's pizza crisis communication strategies - The patriot reverend oliver - Primary and outpatient care vs hospital presentation