Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Homework 2.4 2.5 solving logarithms

22/11/2021 Client: muhammad11 Deadline: 2 Day

Introductory Statistics

OpenStax College Rice University 6100 Main Street MS-380 Houston, Texas 77005

To learn more about OpenStax College, visit http://openstaxcollege.org. Individual print copies and bulk orders can be purchased through our website.

© 2013 Rice University. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution 4.0 International License. Under this license, any user of this textbook or the textbook contents herein must provide proper attribution as follows:

- If you redistribute this textbook in a digital format (including but not limited to EPUB, PDF, and HTML), then you must retain on every page the following attribution: “Download for free at http://cnx.org/content/col11562/latest/.”

- If you redistribute this textbook in a print format, then you must include on every physical page the following attribution: “Download for free at http://cnx.org/content/col11562/latest/.”

- If you redistribute part of this textbook, then you must retain in every digital format page view (including but not limited to EPUB, PDF, and HTML) and on every physical printed page the following attribution: “Download for free at http://cnx.org/content/col11562/latest/.”

- If you use this textbook as a bibliographic reference, then you should cite it as follows: OpenStax College, Introductory Statistics. OpenStax College. 19 September 2013. .

For questions regarding this licensing, please contact partners@openstaxcollege.org.

Trademarks

The OpenStax College name, OpenStax College logo, OpenStax College book covers, OpenStax CNX name, and OpenStax CNX logo are registered trademarks of Rice University. All rights reserved. Any of the trademarks, service marks, collective marks, design rights, or similar rights that are mentioned, used, or cited in OpenStax College, OpenStax CNX, or OpenStax CNX’s sites are the property of their respective owners.

ISBN-10 1938168208 ISBN-13

978-1-938168-20-8

Revision

ST-1-000-RS

OpenStax College

OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements of modern college courses. Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College is working to improve access to higher education for all.

OpenStax CNX

The technology platform supporting OpenStax College is OpenStax CNX (http://cnx.org), one of the world’s first and largest open- education projects. OpenStax CNX provides students with free online and low-cost print editions of the OpenStax College library and provides instructors with tools to customize the content so that they can have the perfect book for their course.

Rice University

OpenStax College and OpenStax CNX are initiatives of Rice University. As a leading research university with a distinctive commitment to undergraduate education, Rice University aspires to path-breaking research, unsurpassed teaching, and contributions to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community of learning and discovery that produces leaders across the spectrum of human endeavor.

Foundation Support

OpenStax College is grateful for the tremendous support of our sponsors. Without their strong engagement, the goal of free access to high-quality textbooks would remain just a dream.

Laura and John Arnold Foundation (LJAF) actively seeks opportunities to invest in organizations and thought leaders that have a sincere interest in implementing fundamental changes that not only yield immediate gains, but also repair broken systems for future generations. LJAF currently focuses its strategic investments on education, criminal justice, research integrity, and public accountability.

The William and Flora Hewlett Foundation has been making grants since 1967 to help solve social and environmental problems at home and around the world. The Foundation concentrates its resources on activities in education, the environment, global development and population, performing arts, and philanthropy, and makes grants to support disadvantaged communities in the San Francisco Bay Area.

Guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy, productive lives. In developing countries, it focuses on improving people’s health with vaccines and other life-saving tools and giving them the chance to lift themselves out of hunger and extreme poverty. In the United States, it seeks to significantly improve education so that all young people have the opportunity to reach their full potential. Based in Seattle, Washington, the foundation is led by CEO Jeff Raikes and Co-chair William H. Gates Sr., under the direction of Bill and Melinda Gates and Warren Buffett.

The Maxfield Foundation supports projects with potential for high impact in science, education, sustainability, and other areas of social importance.

Our mission at the Twenty Million Minds Foundation is to grow access and success by eliminating unnecessary hurdles to affordability. We support the creation, sharing, and proliferation of more effective, more affordable educational content by leveraging disruptive technologies, open educational resources, and new models for collaboration between for-profit, nonprofit, and public entities.

2

This content is available for free at http://cnx.org/content/col11562/1.17

Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 1: Sampling and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Definitions of Statistics, Probability, and Key Terms . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Data, Sampling, and Variation in Data and Sampling . . . . . . . . . . . . . . . . . . . . . 13 1.3 Frequency, Frequency Tables, and Levels of Measurement . . . . . . . . . . . . . . . . . . 29 1.4 Experimental Design and Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5 Data Collection Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6 Sampling Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 2: Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs . . . . . . . . . . . . . . 68 2.2 Histograms, Frequency Polygons, and Time Series Graphs . . . . . . . . . . . . . . . . . . 76 2.3 Measures of the Location of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.4 Box Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.5 Measures of the Center of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.6 Skewness and the Mean, Median, and Mode . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.7 Measures of the Spread of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 2.8 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 3: Probability Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.2 Independent and Mutually Exclusive Events . . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.3 Two Basic Rules of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.4 Contingency Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.5 Tree and Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 3.6 Probability Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Chapter 4: Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable . . . . . . . . . . . 226 4.2 Mean or Expected Value and Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . 228 4.3 Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.4 Geometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 4.5 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 4.6 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 4.7 Discrete Distribution (Playing Card Experiment) . . . . . . . . . . . . . . . . . . . . . . . . 252 4.8 Discrete Distribution (Lucky Dice Experiment) . . . . . . . . . . . . . . . . . . . . . . . . . 255

Chapter 5: Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5.1 Continuous Probability Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 5.2 The Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 5.3 The Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 5.4 Continuous Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Chapter 6: The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 6.1 The Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 6.2 Using the Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 6.3 Normal Distribution (Lap Times) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 6.4 Normal Distribution (Pinkie Length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Chapter 7: The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 7.1 The Central Limit Theorem for Sample Means (Averages) . . . . . . . . . . . . . . . . . . 372 7.2 The Central Limit Theorem for Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 7.3 Using the Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 7.4 Central Limit Theorem (Pocket Change) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 7.5 Central Limit Theorem (Cookie Recipes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Chapter 8: Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 8.1 A Single Population Mean using the Normal Distribution . . . . . . . . . . . . . . . . . . . 415 8.2 A Single Population Mean using the Student t Distribution . . . . . . . . . . . . . . . . . . 424 8.3 A Population Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 8.4 Confidence Interval (Home Costs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 8.5 Confidence Interval (Place of Birth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 8.6 Confidence Interval (Women's Heights) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Chapter 9: Hypothesis Testing with One Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 9.1 Null and Alternative Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 9.2 Outcomes and the Type I and Type II Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 474 9.3 Distribution Needed for Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 476 9.4 Rare Events, the Sample, Decision and Conclusion . . . . . . . . . . . . . . . . . . . . . . 477

3

9.5 Additional Information and Full Hypothesis Test Examples . . . . . . . . . . . . . . . . . . 480 9.6 Hypothesis Testing of a Single Mean and Single Proportion . . . . . . . . . . . . . . . . . . 496

Chapter 10: Hypothesis Testing with Two Samples . . . . . . . . . . . . . . . . . . . . . . . . . 527 10.1 Two Population Means with Unknown Standard Deviations . . . . . . . . . . . . . . . . . 528 10.2 Two Population Means with Known Standard Deviations . . . . . . . . . . . . . . . . . . 536 10.3 Comparing Two Independent Population Proportions . . . . . . . . . . . . . . . . . . . . 539 10.4 Matched or Paired Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 10.5 Hypothesis Testing for Two Means and Two Proportions . . . . . . . . . . . . . . . . . . . 549

Chapter 11: The Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 11.1 Facts About the Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 11.2 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 11.3 Test of Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 11.4 Test for Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 11.5 Comparison of the Chi-Square Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 11.6 Test of a Single Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 11.7 Lab 1: Chi-Square Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 11.8 Lab 2: Chi-Square Test of Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Chapter 12: Linear Regression and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 12.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636 12.2 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 12.3 The Regression Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 12.4 Testing the Significance of the Correlation Coefficient . . . . . . . . . . . . . . . . . . . . 647 12.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 12.6 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 12.7 Regression (Distance from School) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 12.8 Regression (Textbook Cost) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 12.9 Regression (Fuel Efficiency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Chapter 13: F Distribution and One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 13.1 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 13.2 The F Distribution and the F-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 13.3 Facts About the F Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 13.4 Test of Two Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 13.5 Lab: One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Appendix A: Review Exercises (Ch 3-13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 Appendix B: Practice Tests (1-4) and Final Exams . . . . . . . . . . . . . . . . . . . . . . . . . . 761 Appendix C: Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 Appendix D: Group and Partner Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Appendix E: Solution Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Appendix F: Mathematical Phrases, Symbols, and Formulas . . . . . . . . . . . . . . . . . . . . 829 Appendix G: Notes for the TI-83, 83+, 84, 84+ Calculators . . . . . . . . . . . . . . . . . . . . . . 835 Appendix H: Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

4

This content is available for free at http://cnx.org/content/col11562/1.17

PREFACE

About Introductory Statistics Introductory Statistics is designed for the one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it.

The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them.

Coverage and Scope Chapter 1 Sampling and Data Chapter 2 Descriptive Statistics Chapter 3 Probability Topics Chapter 4 Discrete Random Variables Chapter 5 Continuous Random Variables Chapter 6 The Normal Distribution Chapter 7 The Central Limit Theorem Chapter 8 Confidence Intervals Chapter 9 Hypothesis Testing with One Sample Chapter 10 Hypothesis Testing with Two Samples Chapter 11 The Chi-Square Distribution Chapter 12 Linear Regression and Correlation Chapter 13 F Distribution and One-Way ANOVA

Alternate Sequencing Introductory Statistics was conceived and written to fit a particular topical sequence, but it can be used flexibly to accommodate other course structures. One such potential structure, which will fit reasonably well with the textbook content, is provided. Please consider, however, that the chapters were not written to be completely independent, and that the proposed alternate sequence should be carefully considered for student preparation and textual consistency.

Chapter 1 Sampling and Data Chapter 2 Descriptive Statistics Chapter 12 Linear Regression and Correlation Chapter 3 Probability Topics Chapter 4 Discrete Random Variables Chapter 5 Continuous Random Variables Chapter 6 The Normal Distribution Chapter 7 The Central Limit Theorem Chapter 8 Confidence Intervals Chapter 9 Hypothesis Testing with One Sample Chapter 10 Hypothesis Testing with Two Samples Chapter 11 The Chi-Square Distribution Chapter 13 F Distribution and One-Way ANOVA

Pedagogical Foundation and Features • Examples are placed strategically throughout the text to show students the step-by-step process of interpreting and

solving statistical problems. To keep the text relevant for students, the examples are drawn from a broad spectrum of practical topics; these include examples about college life and learning, health and medicine, retail and business, and sports and entertainment.

• Try It practice problems immediately follow many examples and give students the opportunity to practice as they read the text. They are usually based on practical and familiar topics, like the Examples themselves.

• Collaborative Exercises provide an in-class scenario for students to work together to explore presented concepts.

5

• Using the TI-83, 83+, 84, 84+ Calculator shows students step-by-step instructions to input problems into their calculator.

• The Technology Icon indicates where the use of a TI calculator or computer software is recommended.

• Practice, Homework, and Bringing It Together problems give the students problems at various degrees of difficulty while also including real-world scenarios to engage students.

Statistics Labs These innovative activities were developed by Barbara Illowsky and Susan Dean in order to offer students the experience of designing, implementing, and interpreting statistical analyses. They are drawn from actual experiments and data-gathering processes, and offer a unique hands-on and collaborative experience. The labs provide a foundation for further learning and classroom interaction that will produce a meaningful application of statistics.

Statistics Labs appear at the end of each chapter, and begin with student learning outcomes, general estimates for time on task, and any global implementation notes. Students are then provided step-by-step guidance, including sample data tables and calculation prompts. The detailed assistance will help the students successfully apply the concepts in the text and lay the groundwork for future collaborative or individual work.

Ancillaries • Instructor’s Solutions Manual

• Webassign Online Homework System

• Video Lectures (http://cnx.org/content/m18746/latest/?collection=col10522/latest) delivered by Barbara Illowsky are provided for each chapter.

About Our Team Senior Contributing Authors

Barbara Illowsky De Anza College

Susan Dean De Anza College

Contributors

Abdulhamid Sukar Cameron University

Abraham Biggs Broward Community College

Adam Pennell Greensboro College

Alexander Kolovos

Andrew Wiesner Pennsylvania State University

Ann Flanigan Kapiolani Community College

Benjamin Ngwudike Jackson State University

Birgit Aquilonius West Valley College

Bryan Blount Kentucky Wesleyan College

Carol Olmstead De Anza College

Carol Weideman St. Petersburg College

Charles Ashbacher Upper Iowa University, Cedar Rapids

Charles Klein De Anza College

Cheryl Wartman University of Prince Edward Island

Cindy Moss Skyline College

Daniel Birmajer Nazareth College

David Bosworth Hutchinson Community College

David French Tidewater Community College

Dennis Walsh Middle Tennessee State University

Diane Mathios De Anza College

6

This content is available for free at http://cnx.org/content/col11562/1.17

http://cnx.org/content/m18746/latest/?collection=col10522/latest
Ernest Bonat Portland Community College

Frank Snow De Anza College

George Bratton University of Central Arkansas

Inna Grushko De Anza College

Janice Hector De Anza College

Javier Rueda De Anza College

Jeffery Taub Maine Maritime Academy

Jim Helmreich Marist College

Jim Lucas De Anza College

Jing Chang College of Saint Mary

John Thomas College of Lake County

Jonathan Oaks Macomb Community College

Kathy Plum De Anza College

Larry Green Lake Tahoe Community College

Laurel Chiappetta University of Pittsburgh

Lenore Desilets De Anza College

Lisa Markus De Anza College

Lisa Rosenberg Elon University

Lynette Kenyon Collin County Community College

Mark Mills Central College

Mary Jo Kane De Anza College

Mary Teegarden San Diego Mesa College

Matthew Einsohn Prescott College

Mel Jacobsen Snow College

Michael Greenwich College of Southern Nevada

Miriam Masullo SUNY Purchase

Mo Geraghty De Anza College

Nydia Nelson St. Petersburg College

Philip J. Verrecchia York College of Pennsylvania

Robert Henderson Stephen F. Austin State University

Robert McDevitt Germanna Community College

Roberta Bloom De Anza College

Rupinder Sekhon De Anza College

Sara Lenhart Christopher Newport University

Sarah Boslaugh Kennesaw State University

Sheldon Lee Viterbo University

Sheri Boyd Rollins College

Sudipta Roy Kankakee Community College

Travis Short St. Petersburg College

Valier Hauber De Anza College

Vladimir Logvenenko De Anza College

Wendy Lightheart Lane Community College

Yvonne Sandoval Pima Community College

7

Sample TI Technology

Disclaimer: The original calculator image(s) by Texas Instruments, Inc. are provided under CC-BY. Any subsequent modifications to the image(s) should be noted by the person making the modification. (Credit: ETmarcom TexasInstruments)

8

This content is available for free at http://cnx.org/content/col11562/1.17

1 | SAMPLING AND DATA

Figure 1.1 We encounter statistics in our daily lives more often than we probably realize and from many different sources, like the news. (credit: David Sim)

Introduction

Chapter Objectives

By the end of this chapter, the student should be able to:

• Recognize and differentiate between key terms. • Apply various types of sampling methods to data collection. • Create and interpret frequency tables.

You are probably asking yourself the question, "When and where will I use statistics?" If you read any newspaper, watch television, or use the Internet, you will see statistical information. There are statistics about crime, sports, education, politics, and real estate. Typically, when you read a newspaper article or watch a television news program, you are given sample information. With this information, you may make a decision about the correctness of a statement, claim, or "fact." Statistical methods can help you make the "best educated guess."

Since you will undoubtedly be given statistical information at some point in your life, you need to know some techniques for analyzing the information thoughtfully. Think about buying a house or managing a budget. Think about your chosen profession. The fields of economics, business, psychology, education, biology, law, computer science, police science, and early childhood development require at least one course in statistics.

Included in this chapter are the basic ideas and words of probability and statistics. You will soon understand that statistics and probability work together. You will also learn how data are gathered and what "good" data can be distinguished from "bad."

1.1 | Definitions of Statistics, Probability, and Key Terms The science of statistics deals with the collection, analysis, interpretation, and presentation of data. We see and use data in our everyday lives.

CHAPTER 1 | SAMPLING AND DATA 9

In your classroom, try this exercise. Have class members write down the average time (in hours, to the nearest half- hour) they sleep per night. Your instructor will record the data. Then create a simple graph (called a dot plot) of the data. A dot plot consists of a number line and dots (or points) positioned above the number line. For example, consider the following data:

5; 5.5; 6; 6; 6; 6.5; 6.5; 6.5; 6.5; 7; 7; 8; 8; 9

The dot plot for this data would be as follows:

Figure 1.2

Does your dot plot look the same as or different from the example? Why? If you did the same example in an English class with the same number of students, do you think the results would be the same? Why or why not?

Where do your data appear to cluster? How might you interpret the clustering?

The questions above ask you to analyze and interpret your data. With this example, you have begun your study of statistics.

In this course, you will learn how to organize and summarize data. Organizing and summarizing data is called descriptive statistics. Two ways to summarize data are by graphing and by using numbers (for example, finding an average). After you have studied probability and probability distributions, you will use formal methods for drawing conclusions from "good" data. The formal methods are called inferential statistics. Statistical inference uses probability to determine how confident we can be that our conclusions are correct.

Effective interpretation of data (inference) is based on good procedures for producing data and thoughtful examination of the data. You will encounter what will seem to be too many mathematical formulas for interpreting data. The goal of statistics is not to perform numerous calculations using the formulas, but to gain an understanding of your data. The calculations can be done using a calculator or a computer. The understanding must come from you. If you can thoroughly grasp the basics of statistics, you can be more confident in the decisions you make in life.

Probability Probability is a mathematical tool used to study randomness. It deals with the chance (the likelihood) of an event occurring. For example, if you toss a fair coin four times, the outcomes may not be two heads and two tails. However, if you toss the same coin 4,000 times, the outcomes will be close to half heads and half tails. The expected theoretical probability of heads in any one toss is 12 or 0.5. Even though the outcomes of a few repetitions are uncertain, there is a regular pattern

of outcomes when there are many repetitions. After reading about the English statistician Karl Pearson who tossed a coin 24,000 times with a result of 12,012 heads, one of the authors tossed a coin 2,000 times. The results were 996 heads. The fraction 9962000 is equal to 0.498 which is very close to 0.5, the expected probability.

The theory of probability began with the study of games of chance such as poker. Predictions take the form of probabilities. To predict the likelihood of an earthquake, of rain, or whether you will get an A in this course, we use probabilities. Doctors use probability to determine the chance of a vaccination causing the disease the vaccination is supposed to prevent. A stockbroker uses probability to determine the rate of return on a client's investments. You might use probability to decide to buy a lottery ticket or not. In your study of statistics, you will use the power of mathematics through probability calculations to analyze and interpret your data.

10 CHAPTER 1 | SAMPLING AND DATA

This content is available for free at http://cnx.org/content/col11562/1.17

Key Terms In statistics, we generally want to study a population. You can think of a population as a collection of persons, things, or objects under study. To study the population, we select a sample. The idea of sampling is to select a portion (or subset) of the larger population and study that portion (the sample) to gain information about the population. Data are the result of sampling from a population.

Because it takes a lot of time and money to examine an entire population, sampling is a very practical technique. If you wished to compute the overall grade point average at your school, it would make sense to select a sample of students who attend the school. The data collected from the sample would be the students' grade point averages. In presidential elections, opinion poll samples of 1,000–2,000 people are taken. The opinion poll is supposed to represent the views of the people in the entire country. Manufacturers of canned carbonated drinks take samples to determine if a 16 ounce can contains 16 ounces of carbonated drink.

From the sample data, we can calculate a statistic. A statistic is a number that represents a property of the sample. For example, if we consider one math class to be a sample of the population of all math classes, then the average number of points earned by students in that one math class at the end of the term is an example of a statistic. The statistic is an estimate of a population parameter. A parameter is a number that is a property of the population. Since we considered all math classes to be the population, then the average number of points earned per student over all the math classes is an example of a parameter.

One of the main concerns in the field of statistics is how accurately a statistic estimates a parameter. The accuracy really depends on how well the sample represents the population. The sample must contain the characteristics of the population in order to be a representative sample. We are interested in both the sample statistic and the population parameter in inferential statistics. In a later chapter, we will use the sample statistic to test the validity of the established population parameter.

A variable, notated by capital letters such as X and Y, is a characteristic of interest for each person or thing in a population. Variables may be numerical or categorical. Numerical variables take on values with equal units such as weight in pounds and time in hours. Categorical variables place the person or thing into a category. If we let X equal the number of points earned by one math student at the end of a term, then X is a numerical variable. If we let Y be a person's party affiliation, then some examples of Y include Republican, Democrat, and Independent. Y is a categorical variable. We could do some math with values of X (calculate the average number of points earned, for example), but it makes no sense to do math with values of Y (calculating an average party affiliation makes no sense).

Data are the actual values of the variable. They may be numbers or they may be words. Datum is a single value.

Two words that come up often in statistics are mean and proportion. If you were to take three exams in your math classes and obtain scores of 86, 75, and 92, you would calculate your mean score by adding the three exam scores and dividing by three (your mean score would be 84.3 to one decimal place). If, in your math class, there are 40 students and 22 are men and 18 are women, then the proportion of men students is 2240 and the proportion of women students is

18 40 . Mean and

proportion are discussed in more detail in later chapters.

NOTE

The words " mean" and " average" are often used interchangeably. The substitution of one word for the other is common practice. The technical term is "arithmetic mean," and "average" is technically a center location. However, in practice among non-statisticians, "average" is commonly accepted for "arithmetic mean."

Example 1.1

Determine what the key terms refer to in the following study. We want to know the average (mean) amount of money first year college students spend at ABC College on school supplies that do not include books. We randomly survey 100 first year students at the college. Three of those students spent $150, $200, and $225, respectively.

Solution 1.1

The population is all first year students attending ABC College this term.

The sample could be all students enrolled in one section of a beginning statistics course at ABC College (although this sample may not represent the entire population).

CHAPTER 1 | SAMPLING AND DATA 11

The parameter is the average (mean) amount of money spent (excluding books) by first year college students at ABC College this term.

The statistic is the average (mean) amount of money spent (excluding books) by first year college students in the sample.

The variable could be the amount of money spent (excluding books) by one first year student. Let X = the amount of money spent (excluding books) by one first year student attending ABC College.

The data are the dollar amounts spent by the first year students. Examples of the data are $150, $200, and $225.

1.1 Determine what the key terms refer to in the following study. We want to know the average (mean) amount of money spent on school uniforms each year by families with children at Knoll Academy. We randomly survey 100 families with children in the school. Three of the families spent $65, $75, and $95, respectively.

Example 1.2

Determine what the key terms refer to in the following study.

A study was conducted at a local college to analyze the average cumulative GPA’s of students who graduated last year. Fill in the letter of the phrase that best describes each of the items below.

1._____ Population 2._____ Statistic 3._____ Parameter 4._____ Sample 5._____ Variable 6._____ Data

a) all students who attended the college last year b) the cumulative GPA of one student who graduated from the college last year c) 3.65, 2.80, 1.50, 3.90 d) a group of students who graduated from the college last year, randomly selected e) the average cumulative GPA of students who graduated from the college last year f) all students who graduated from the college last year g) the average cumulative GPA of students in the study who graduated from the college last year

Solution 1.2 1. f; 2. g; 3. e; 4. d; 5. b; 6. c

Example 1.3

Determine what the key terms refer to in the following study.

As part of a study designed to test the safety of automobiles, the National Transportation Safety Board collected and reviewed data about the effects of an automobile crash on test dummies. Here is the criterion they used:

Speed at which Cars Crashed Location of “drive” (i.e. dummies)

35 miles/hour Front Seat

Table 1.1

Cars with dummies in the front seats were crashed into a wall at a speed of 35 miles per hour. We want to know the proportion of dummies in the driver’s seat that would have had head injuries, if they had been actual drivers. We start with a simple random sample of 75 cars.

Solution 1.3

12 CHAPTER 1 | SAMPLING AND DATA

This content is available for free at http://cnx.org/content/col11562/1.17

The population is all cars containing dummies in the front seat.

The sample is the 75 cars, selected by a simple random sample.

The parameter is the proportion of driver dummies (if they had been real people) who would have suffered head injuries in the population.

The statistic is proportion of driver dummies (if they had been real people) who would have suffered head injuries in the sample.

The variable X = the number of driver dummies (if they had been real people) who would have suffered head injuries.

The data are either: yes, had head injury, or no, did not.

Example 1.4

Determine what the key terms refer to in the following study.

An insurance company would like to determine the proportion of all medical doctors who have been involved in one or more malpractice lawsuits. The company selects 500 doctors at random from a professional directory and determines the number in the sample who have been involved in a malpractice lawsuit.

Solution 1.4

The population is all medical doctors listed in the professional directory.

The parameter is the proportion of medical doctors who have been involved in one or more malpractice suits in the population.

The sample is the 500 doctors selected at random from the professional directory.

The statistic is the proportion of medical doctors who have been involved in one or more malpractice suits in the sample.

The variable X = the number of medical doctors who have been involved in one or more malpractice suits.

The data are either: yes, was involved in one or more malpractice lawsuits, or no, was not.

Do the following exercise collaboratively with up to four people per group. Find a population, a sample, the parameter, the statistic, a variable, and data for the following study: You want to determine the average (mean) number of glasses of milk college students drink per day. Suppose yesterday, in your English class, you asked five students how many glasses of milk they drank the day before. The answers were 1, 0, 1, 3, and 4 glasses of milk.

1.2 | Data, Sampling, and Variation in Data and Sampling Data may come from a population or from a sample. Small letters like x or y generally are used to represent data values. Most data can be put into the following categories:

• Qualitative

• Quantitative

Qualitative data are the result of categorizing or describing attributes of a population. Hair color, blood type, ethnic group, the car a person drives, and the street a person lives on are examples of qualitative data. Qualitative data are generally described by words or letters. For instance, hair color might be black, dark brown, light brown, blonde, gray, or red. Blood type might be AB+, O-, or B+. Researchers often prefer to use quantitative data over qualitative data because it lends itself more easily to mathematical analysis. For example, it does not make sense to find an average hair color or blood type.

CHAPTER 1 | SAMPLING AND DATA 13

Quantitative data are always numbers. Quantitative data are the result of counting or measuring attributes of a population. Amount of money, pulse rate, weight, number of people living in your town, and number of students who take statistics are examples of quantitative data. Quantitative data may be either discrete or continuous.

All data that are the result of counting are called quantitative discrete data. These data take on only certain numerical values. If you count the number of phone calls you receive for each day of the week, you might get values such as zero, one, two, or three.

All data that are the result of measuring are quantitative continuous data assuming that we can measure accurately. Measuring angles in radians might result in such numbers as π6 ,

π 3 ,

π 2 , π ,

3π 4 , and so on. If you and your friends carry

backpacks with books in them to school, the numbers of books in the backpacks are discrete data and the weights of the backpacks are continuous data.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Top Essay Tutor
A+GRADE HELPER
Homework Guru
Accounting & Finance Specialist
Chartered Accountant
Peter O.
Writer Writer Name Offer Chat
Top Essay Tutor

ONLINE

Top Essay Tutor

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$40 Chat With Writer
A+GRADE HELPER

ONLINE

A+GRADE HELPER

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$34 Chat With Writer
Homework Guru

ONLINE

Homework Guru

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$16 Chat With Writer
Accounting & Finance Specialist

ONLINE

Accounting & Finance Specialist

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$18 Chat With Writer
Chartered Accountant

ONLINE

Chartered Accountant

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$38 Chat With Writer
Peter O.

ONLINE

Peter O.

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$46 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Can someone do my Week 1 & Week 2 Discussion in Principles in Managerial Accounting? - Taskstream com main main_frame asp - Law of the donut worksheet 12.7 answers - Biology project karyotyping activity answers - The myth of the san people of zimbabwe - Can carbohydrates contain nitrogen - Hair - Macbeth act 4 graphic organizer - Shadow health history answers - Jcpenney everyday low pricing - The coupon rate on a tax exempt bond is 5.6 - Logo Design - How to write a discussion post in apa format - Ethics area of knowledge - 747 bus route map - Pico question nurse burnout - Capella behavior analysis - On the loan worksheet in cell c9 - Reflection Paper - Bunsen burner max temp - Delta airlines case study strategic management - Sears retail simulation answers - Multiplier effect practice problems - MK 405 Choose a popular video marketing campaign. Using the 'best practices for video marketing' discussion in your text as a guide, explain why you think the campaign was successful. Remember share a link for your example. - Bunsen burner flame types - 521 Board Discussion week 6 - Therapeutic Communication - Apply soft edge rectangle picture style - Control enter on mac excel - Riot games human resources - Google drive ender's game english - Does table salt melt ice faster - Week 6f orum PERCEPTION - Parker v twentieth century fox film corporation - Physics education v35 2 march 2000 130 131 - Secret life of bees packet answers - Case Brief - Leonardo hotels head office - Ethical Relativitism - TWO PART WORK - Crazy critters ice blocks - Human Services - Intermediate value theorem worksheet answers - Unit 3 Group Project Legal and Regulatory compliance - Persuasive speech on tanning beds - The good shepherd mosaic history - Allport and postman 1947 - School vs education russell baker - PMB WOMEN'S CLINIC +27835179056 Misoprostol (Cytotec) BEST SAFE ABORTION PILLS Pietermaritzburg Richmond UMLAZI KWAMASHU UMZINTO - Four elements of natural selection - John hudson pottery uk - A piston cylinder device with a set of stops - International tables for crystallography volume h powder diffraction - Data warehouse data dictionary - Loss of individuality in the handmaid's tale - Opioid - Paper g320 journal 1 - Themes in tempest and hag seed - Only for grace grades - The passing of grandison summary - Mary newman halls of residence plymouth - Presentation to Investors - Angina bullosa haemorrhagica lupus - Discussion: Unit 3 - Economics is best described as the - Techniques used in interpersonal psychotherapy - Ctec xfp network card - Distance from earth to mercury in scientific notation - Https www youtube com watch v elvuqv0v1ee - Circuit board fabricators inc - Ast advanced strategies portfolio - Business report example hsc - International diploma in language teaching management - Facebook ipo case study solution - Rear window miss lonelyhearts quotes - Exchange settlement accounts definition - Boral timber noble park - Auditing rules in Oracle 12c - The spirit of zen sam van schaik - Diagram of earth layers - How often does the moon rotate on its axis - Rosemount nuclear instruments inc - FOUNDATION OF PUBLIC HEALTH NURSING - The out of control interview case study answers - Sara lee croissants discontinued - Easter show ride coupons - DB 1 L&E - Ped assignment - Assignent 1.1 - Screen for child anxiety related disorders scared parent version - Mumps programming language example - Chapter 18 skills and applications answers - Introduction to java 11th edition pdf - Common root words and word origins - Kurt russell net worth - Managing difficult employees powerpoint - Three Pillars and Future Impact - Social media makes us lonely essay - 7th grade pure substances and mixtures worksheet - Hot work permit form template