Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

How to measure voltage on a breadboard

25/11/2021 Client: muhammad11 Deadline: 2 Day

Lab Report

1- the lab manual, but since we don't have the tools there is an alternative way you can use to get the data easily. I will attach the alternative below, it is the "Added" file.

2- Letter on how to write a lab report.

3- Letter on the grading criteria (how the report will be graded).

4- the "Added" file that has the easy way to get the data for the lab.

Physics Laboratory Manual

Ohm’s Law

The current through a resistor is proportional to the voltage across the resistor. This simple relationship between three fundamental electrical quantities current, voltage, and resistance was named Ohm’s Law after it’s discoverer to commemorate this extremely useful contribution to science and engineering. It’s important to note that Ohm’s Law holds for resistors and conductors, so-called ohmic materials, but there are also non-ohmic materials such as electric heating elements and semiconductors.

Current, voltage, and resistance, are somewhat abstract concepts because we can’t directly observe the electrons flowing through a wire. To help with our understanding, we can make an analogy between electron flow and something more familiar to us in everyday life: water flow. While pressure drives water through pipes, voltage drives electrical current through wires. The table below shows the electrical quantities and their water analog.

Electrical Quantity
Description
Units
Water Analog
Voltage

The potential energy difference per unit charge between two points in a circuit.

Volts (V)

The pressure difference between two points in a pipe.

Current

The charge per second passing through an element.

Amperes (A)

The flow rate (i.e. liters per second) through the pipe.

Resistance

Resistance to charge flow through an element. Resistance reduces charge flow unless voltage is increased.

Ohms ()

A constriction in the pipe that reduces flow unless pressure is increased.

Learning Goals for This Laboratory:

· Learn how current, resistance, and voltage are interrelated.

· Practice connecting complete circuits and evaluating current flow.

Apparatus
iOLab device with dongle and software installed, wires, several 1 Ω and 10 k Ω resistors, breadboard

Throughout this lab we will be using our iOLab devices to measure voltages in different places on a few simple circuits. You may want to review the previous lab on the basics of the breadboard and iOlab. If you get your resistors mixed up and do not know how to tell them apart, check out this guide to reading the color bands http://www.resistorguide.com/resistor-color-code/

Part I. Measuring the current in a circuit
The general procedure is to build a simple circuit and use an ammeter to measure the current through the circuit. The circuit, shown in Figure 1 below, is simply a 10 kΩ resistor connected to a 3.3 V voltage source. Note that 10 kΩ is only the nominal value of the resistance, the actual value is usually slightly off due prioritizing cost over precision.

Figure 1. Simple circuit with 3.3 V source, 10 kΩ resistor and ammeter.

Current measurements are done using ammeters, so named because current is measured in amps. Ammeters don’t measure current directly, instead they are comprised of an internal resistor and voltmeter. If we know the voltage across the internal resistor, we know the current through it via Ohm’s law. Figure 2 shows the same circuit as Figure 1 with the ammeter’s internal resistor and voltmeter shown within the dashed box. As you can see, our ammeter is simply a 1 Ω resistor added in series to the 10 kΩ resistor along with a voltmeter connected in parallel across the 1 Ω resistor.

Figure 2. Circuit showing composite parts of the ammeter inside the dashed line.

Question 1. What is the current in units of mA flowing through a 1 Ω resistor if it has 5 mV across it? What is the current when the same resistor has 10 mV across it? How about 100 mV? Do you see the trend here (and why we chose a 1 Ω resistor for our ammeter)?

a) On your breadboard, build the circuit in Figure 2. Leave out the voltmeter until the last step. There are a lot of ways to connect this circuit on the breadboard, one way to do it is as follows:

i. Start by connecting a wire from iOlab’s 3.3 V output to the positive power rail of the breadboard.

ii. Then connect one end of the 10 kΩ resistor into the positive power rail and connect the other end into a pin of your choice on the breadboard.

iii. Next, connect one end of the 1 Ω resistor into the same row as the 10 kΩ resistor, and the other end of the resistor into the negative power rail of the breadboard.

iv. To complete the circuit, use a jumper wire to connect the negative power rail of the breadboard to the ground (GND) of the iOlab.

v. Your circuit should look something like this:

Figure 3. Example breadboard layout for measuring the current through a 10 kΩ resistor. Note that both resistors and the G+ jumper all connect to the same row of the breadboard.

vi. The last step is to connect iOlab’s high gain G+/G- sensor as the voltmeter. Use two wires to do this, one for G+ and one for G-, and connect one to each end of the 1 Ω resistor as in the figure.

Question 2. Before taking measurements, calculate the current expected in this circuit. Note that because the circuit is a single loop, there is only one value of current shared by all components in the circuit.

Question 3. Will we introduce significant error if we ignore the 1 Ohm resistor when calculating the current in this circuit? Why or why not? Back up your answer mathematically noting that resistances in series add, so the total nominal resistance is 10,001 Ω.

b) In the iOLab software, select the High Gain sensor and click Record to see the data displayed in real time. If you obtain a negative value for the voltage across the 1 Ω resistor, you probably reversed the G+ and G- jumper wires. If your data is noisy, check your jumper wires for loose connections. If you’re having trouble viewing the data, you can use the set of three buttons next to the Reset button. The first of these buttons allows you to see the exact values of data points at the location of your cursor. The second button with the dropdown allows you to zoom in along the x- or y- axis or both. The third button allows you to click and drag the data around however you like (this is especially helpful if the data goes offscreen).

c) Convert the high gain sensor’s voltage measurement to current in units of mA. Make an Excel table with columns for voltage, current, and nominal resistance and record your values in the table (the voltage is 3.3 V). Compare the current you measured to the expected value and find a percent difference.

d) Does it matter whether the current is measured upstream or downstream of the 10 k Ω resistor? Try swapping the resistors and measuring the current to confirm that in a circuit with a single current loop the order of the components doesn’t matter, and the current is the same everywhere in the circuit.

e) There is a range of tolerance (i.e. a margin of error) associated with most resistors when they are manufactured. Check the resistor color code chart linked above and determine the tolerance of the 10 kΩ resistor (usually the tolerance bands are brown (1 %), gold (5 %), or silver (10 %)). Add a fourth column to your data table for actual resistance in Ω. Use the known voltage of 3.3 V and the current you measured to have Excel calculate the actual resistance.

Question 4. Does the measured resistance fall within the tolerance range of the nominal value of 10,000 Ω? For example, if the tolerance of a particular 100 Ω resistor is 10 %, the actual value should be in the range 100 10 Ω. If the value is not within this range, the resistor is “out of spec” and could be returned to the manufacturer.

Part II. Exploration
Let’s add to our circuit and further explore Ohm’s law along with series and parallel circuits.

a) What will happen to the current flowing in our circuit if we add more resistors in series? Add a second 10 kΩ resistor in series with the first so that you have the circuit in Figure 4 below. What do you think the current will be now? Measure and record the new current and corresponding nominal equivalent resistance for this circuit in the data table with your values from Part I. Remember that for series resistors, the equivalent resistance is the sum of all of the individual series resistances. Also calculate the actual resistance for your table.

Figure 4. Measuring the current with two 10 k resistors in series.

b) Add one of the 4.7 kΩ resistors in series to your circuit so that you now have two 10 kΩ and a 4.7 kΩ resistor in a single circuit. Record the current, nominal equivalent resistance, and calculated actual resistance in your data table.

c) Finally, add the other 4.7 kΩ resistor in series so that you now have two 10 kΩ and two 4.7 kΩ resistors in a single circuit. Record the current, nominal equivalent resistance, and calculated actual resistance in your data table.

d) Now let’s build a circuit with two parallel 10 kΩ resistors as in Figure 5 below. Add 1 Ω resistors to each branch of the circuit so we can measure the current in each branch. Use the high gain leads as before to measure the voltage on the 1 Ω resistors; for convenience you only need to touch the leads to either end of a 1 Ω resistor rather than plugging the leads into the breadboard. Compare the current in each of the three branches of the circuit and record the values for your lab report.

Figure 5. Two 10 kΩ resistors in parallel. Several 1 Ω resistors are added for current measurement.

Question 5. Find the equivalent resistance of the circuit having two parallel 10 kΩ resistors (remember parallel resistors add in inverse, refer to your text if you are unfamiliar with equivalent resistance of parallel resistors). Does the current you measured in the series resistor (the bottom one in Figure 5) roughly agree with what is expected according to the equivalent resistance you calculated?

Question 6. What current did you predict should be flowing in each branch of this circuit? Why is this current the same as when you had only a single 10 kΩ resistor in the circuit? Support your answer mathematically using Ohm’s law.

1

5 7/6/2020 10:26 AM

10 kΩ +3.3V A 10 kΩ +3.3V V 1 Ω A

10 kΩ +3.3V A 10 kΩ +3.3V V 1 Ω A

10 kΩ 10 kΩ +3.3V A 10 kΩ +3.3V V 1 Ω A

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Pro Writer
Finance Professor
Professor Smith
Smart Tutor
Professional Coursework Help
Calculation Master
Writer Writer Name Offer Chat
Pro Writer

ONLINE

Pro Writer

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$20 Chat With Writer
Finance Professor

ONLINE

Finance Professor

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$22 Chat With Writer
Professor Smith

ONLINE

Professor Smith

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$30 Chat With Writer
Smart Tutor

ONLINE

Smart Tutor

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$50 Chat With Writer
Professional Coursework Help

ONLINE

Professional Coursework Help

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$48 Chat With Writer
Calculation Master

ONLINE

Calculation Master

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$18 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Mccann co has identified an investment project - Surface area to volume ratio formula - Np 31970 0 ps4 error code - Essay assignment- how Blockchain technology can be implemented to reduce ad fraud and cost while meeting consumers’ increasing expectation for excellent customer service? - Environmental sciences - Data flow diagram for hostel management system - Overview chemical bonds worksheet - What element has 92 protons - How to draw component diagram in rational rose - What is the shortest stopping distance at 30mph - Baskerville old face adobe - Physical asset controls in maritime - Southern cross gts bkn - Even though parts of the title sound the same as units that you have previously completed, there is significant difference i - How to describe snow - Community health capstone project ideas - An example of balanced forces - Paper on Big Data and Internet of Things - In german suburb life goes on without cars essay - English composition Q2 - Artificial intelligence in power station ieee paper - Big mac theory of exchange rates - Ls timing control module - Ralph covert drivin in my car - The great victorian desert - A summer's reading bernard malamud - Qualitative analysis of group 1 cations pre lab - Natural selection lab answer key - Queendom com emotional intelligence test - CS week 13 discussion - Electrical analogy of fluid flow - Glb ethics and law - Fluke vr1710 software download - Bob rowten city bank mortgage - Descriptive Statistics - Saritha husband venkata subbaiah - The invention of wings questions - Wellness vs illness model of care - Venture capital deal terms - The origin and predominant philosophy of the juvenile system - MKTG201 Wek 8 Discussion - PACES of videos; "Stressed out" by 21 pilots analysis - Charles tyrwhitt 3 for 99 2018 - Gesell stages of development - Creative innovative and proactive demeanour - Gcse french writing holidays example - Response 1 - Lunch at landmark hotel - Thought Paper - Anxiety Disorders in the Media - Double pipe heat exchanger ppt - Family therapy - What is the risk adjusted npv of each project - Brave and startling truth - Accident dave eggers analysis - Early onset Schizophrenia - Hill park general hospital - Counterargument - Chamberlain college of nursing downers grove illinois - Preschool prep dvd free download - Discussin week 7 - Benefits of diversity in hospitality industry - Lockdown alexander gordon smith sparknotes - Oscar chess v williams 1957 - Bed making procedure in nursing - Solahart hot water system booster switch - Clinical Journal Assignment - The Origin of Corn - Phy sec pca week 8 - Synthesis of fe acac 3 from fecl3 - A composite wall separates combustion gases at - Financial reporting in the catholic church case study - Assignment 1.2: A Changing World Final Paper - Effective training systems strategies and practices pdf - Teradata logical data model - Mrs gren science meaning - During 2014 raines umbrella corp - Exploding the moment - English writing practical - Floor drain standpipe adapter - Product Strategy Discussion - Forms of technical communication - 3 main processes of the water cycle - Sandra y yo necesitamos estudiar - Caregiver medical consent form - Week 5 final assignment - Should everybody write dennis baron essay - Reaction paper about magna carta - Experiment 2: bacterial transfer to a stab tube and an agar plate - Reflection paper - Dr dietrich klinghardt autism - Comparing mass year 2 - Business analytics implementation plan for a design firm - Phenyl trimethicone chemical formula - The term _________________ refers to configuring a web page is optimally ranked by search engines - The Kind Behavior - A4-70 stainless steel bolt torque - Cessna caravan for lease - Central coast adventist school - Box hill tafe email