Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

. I need 2400 words on MNIST

27/08/2020 Client: azharr Deadline: 2 Day

Instructions 

Written Character Classification (MNIST) with via Multi-Layer Perception 


2400 words 

8 pages double space for report 


All files should be here in Google drive, 


https://drive.google.com/drive/folders/1i8565J1fBVSy-oBZQH7CHjsgHcEt95Jg 


Important note: 


One of the folders is called 'For week 8 MATLAB Demo ...in Google drive' that one make first (Look, Parent Session Due date) on the Pdf (initialize mlp for XOR). Rest make later (look Child session due date) 


The requirement file is attached

.........................................................................................................................................................................

Attachment 1;

MNIST Written CharacterClassification with a Multi-Layer Perceptron Learning Outcomes

1.Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection

2.Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions

3.Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem4.Create solutions to machine learning problems using appropriate software.

Data set

The dataset MNIST contains images of hand-written characters 0-9. The task is to take an image as input and determine which of the numbers 0-9 is written in it. The dataset is an industry standard and one of the most common benchmarks for new classification algorithms. The dataset and information about it can be found here: http://yann.lecun.com/exdb/mnist/ .

 
The dataset is already pre-structured into training and test sets, which can be downloaded on the homepage. Performances of common algorithms on this database are well known and also documented as error-rates on the test set on the homepage.The dataset can be easily read into Matlab or Octave with commonly available helper scripts such as on http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset .   

% Change the filenames if you've saved the files under different names

% On some platforms, the files might be saved as % train-images.idx3-ubyte / train-labels.idx1-ubyte images = loadMNISTImages('train-images-idx3-ubyte'); labels = loadMNISTLabels('train-labels-idx1-ubyte');

% We are using display_network from the autoencoder codedisplay_network(images(:,1:100)); % Show the first 100 imagesdisp(labels(1:10));

  Machine Learning and Evaluation  

For this coursework you will program and use the Backpropagation learning algorithm for Multi-Layer Perceptrons (a.k.a. “Deep Learning”) in Matlab/Octave. The attached Matlab file provides a stub for the neural network code with data members and a constructor already in place. Fill in the methods to initialize the weights, to compute the output of the network for a given input, as well as methods to train the network by means of the backpropagation algorithm. Use of the template is compulsory. Implementations outside the template design will not be accepted unless explicitly and individually agreed by the module leader. The network implementation must have at least one hidden layer (as is provided). Backpropagation may be implemented as online algorithm.

Experiments must at least show:

•The training and test error

•A comparison of different hidden layer sizes

The entire experiment must be submitted as Matlab script file from which it can be reproduced. Indicate whether you developed in Matlab or Octave.

Bonus points are given for the implementation of more network layers, an additional batch-gradient implementation of backpropagation, or meaningful pre-processing steps.Further bonus points are given for use of a separate validation set, for crossvalidation, or experimental evaluation of any other relevant parameters.

Report structure and assessment (70% of module mark) 1)Write a brief introduction that introduces (10%)

1)Explains what MNIST is about and what its contents are, what relevant size characteristics are

2)Explain why MNIST is more challenging than the Iris dataset.

3)Briefly discuss key algorithm performances using the listing on the data set homepage and explain what can be expected for the following experiment.

2)Implement and document a multi-layer perceptron and the backpropagation training algorithm in Matlab (20%)

1)Build your code up systematically step by step and test. Provide evidence of that process.

2)5 of the 20 marks in this section are reserved as speed bonus for who can live-demo a MLP successfully learning XOR (or a similar function) by the 14/11/19.

3)Realize and describe an experiment in Matlab that evaluates the classification error rate for MLP on the MNIST dataset. Use appropriate illustrations and diagrams as well as statistics. (20%)

1)Make sure you have one successfully learning parameter set first, and start to explore systematically from there. Pay particular attention to finding an appropriate learning rate first.

2)This experiment can be conducted without a full back-propagation implementation as long as the forward propagation and the learning of the output layer works, although results will vary from the intended experiment.

4)Bonus points for additional features of MLP or experiment, see above. (10%)

5)Write a brief conclusion on the results and compare to results documented for other algorithms as well as MLP configurations on the data set homepage. Explain possible current limitations of your solutions and possible further strategies to improve on the results (10%)


Attachments:

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Professor Smith
Writer Writer Name Offer Chat
Professor Smith

ONLINE

Professor Smith

Hello, I am a skilled, resourceful and experienced content and academic writer. I have written over 1000 different articles, academic papers and reports and all my clients.

$40 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Fragmented ip protocol wireshark - Access to food that support healthy eating patterns in Los Angeles, CA - Edward de bono net worth - Supply chain challenges at leapfrog case study answers - Soft language in psychology - Pregnancy - Ieee 488 to usb converter - Bullard house negotiation analysis - Shape of distribution stem and leaf plot - St hilliers property pty ltd abn - Discuss the risks of avoiding confrontation of a problem employee. - Beal bank boca raton fl - Manassas high school memphis wiki - Bickerley green nursing home - Week 2 discussion - One example of neolithic myths are - SWOT analysis needed. - Literature review proposal - Data mining midterm exam with solutions - Week 10 discussion - Whistleblowing and professional responsibility sissela bok - Made in bangladesh questions and answers - Directors assistant funeral software - Is mf01 183 1392 - An auditor strives to achieve independence in appearance to - No witchcraft for sale characters - Advantages of media conglomerates - Syrian War And EU In A Vulnerable Situation - Tupac and my non thug life - Energy australia nmi number - Uq bookshop st lucia opening hours - Music therapy exam questions - Recreation and wellness intranet project cost estimate - A beautiful mind movie questions - Tag heuer used watch values - Russian steam locomotive 4-14-4 - Inside a computer diagram - 300 dollar bath bomb yin yang - Chris janson real friends tour ralston arena january 31 - Nursing care plan concept map - How to make glow sticks brighter - Jefferson lab standards of learning - 7-2 discussion: Implementing Multiple Revision Strategies - ENGLISH 200 - 3par ssmc default password - Advertising and public relations research jugenheimer pdf - Financial Basics - Geometry two column proofs worksheet - Long term objectives in strategic management - Reemerging disease - 65c king william street reservoir - 14 minus the quotient of 25 and p - Rnsh ambulatory care centre phone number - The management of grief by bharati mukherjee themes - Queen mary student enquiry centre contact number - Disney goals and objectives - 3 stages of learning a skill - Rondeaus kickboxing 16 week challenge - Classifying polynomials by degree - Summary of journals - The yellow wallpaper discussion questions and answers - Weather map assignment - What is tweening in multimedia - 6 steps of troubleshooting - Reflections: Adventures of an IT Leader - How to make power with a potato - Http www codeblocks org downloads - Ob case study with solution pdf - Bc chemistry 12 answer key - Ends ways and means model - Project management simulation scope resources and schedule scenario a - Silas marner study questions and answers - Ellen foster chapter 3 summary - Individual success plan gcu - Stonepit field milton keynes - LITERATURE - Introduction to criminal justice bohm 8th edition - Emergi lite mini inverter - Ritz carlton target market - Nursing - Human Resources case study - Chapter 8 activity 8.1 test your management iq - Community Assessment and Analysis Presentation - Outback truckers turbo jailed - Basic matrix operations worksheet answers - Red rooster line sydney - Discharge of contract by mutual agreement - P song jolly phonics - Diagnosing fictional characters with psychological disorders - 121 bus timetable cairns - Economic 6 - Essentials of nursing research - First Draft Self-Evaluation and Reflection - Research Paper - (DQ) Biz News - Consumer behavior - Nitrogen gas and hydrogen gas - BSHS/382 - RESEARCH AND STATISTICS - Qut student log in - Signature assignment challenges of expansion to a foreign location - Malcolm bricklin net worth 2018