Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

I need full procedures of the problem and only need the answer for the question which are marked. attachment Unit4CAHomework-AlgebraAndTrig-OP1.pdf attachment Unit5CAHomework-AlgebraAndTrig-OP.pdf

21/04/2020 Client: azharr Deadline: 24 Hours

Experiment 2: Concentration Gradients and Membrane Permeability


In this experiment, you will dialyze a solution of glucose and starch to observe:


The directional movement of glucose and starch.

The effect of a selectively permeable membrane on the diffusion of these molecules.

An indicator is a substance that changes color when in the presence of a specific substance. In this experiment, IKI will be used as an indicator to test for the presence of starch.






Materials


(5) 100 mL Beakers

10 mL 1% Glucose Solution, C6H12O6

4 Glucose Test Strips

(1) 100 mL Graduated Cylinder

4 mL 1% Iodine-Potassium Iodide, IKI

5 mL Liquid Starch, C6H10O5

3 Pipettes

4 Rubber Bands (Small; contain latex, handle with gloves on if allergic)






Permanent Marker

*Stopwatch

*Water

*Scissors


*15.0 cm Dialysis Tubing


*You Must Provide

*Be sure to measure and cut only the length you need for this experiment. Reserve the remainder for later experiments.















Attention!


Do not allow the open end of the dialysis tubing to fall into the beaker. If it does, remove the tube and rinse thoroughly with water before refilling it with the starch/glucose solution and replacing it in the beaker.




Note:


If you make a mistake, the dialysis tubing can be rinsed and used again.



Dialysis tubing must be soaked in water before you will be able to open it up to create the dialysis “bag.” Follow these directions for this experiment:


1. Soak the tubing in a beaker of water for ten minutes.


2. Place the dialysis tubing between your thumb and forefinger, and rub the two digits together in a shearing manner. This motion should open up the “tube” so that you can fill it with the different solutions.




Procedure


1. Measure and pour 50 mL of water into a 100 mL beaker using the 100 mL graduated cylinder. Cut a piece of dialysis tubing 15.0 cm long. Submerge the dialysis tubing in the water for at least ten minutes.





2. Measure and pour 82 mL of water into a second 100 mL beaker using the 100 mL graduated cylinder. This is the beaker you will put the filled dialysis bag into in Step 9.


3. Make the glucose/sucrose mixture. Use a graduated pipette to add 5 mL of glucose solution to a third 100 mL beaker and label it “dialysis bag solution.” Use a different graduated pipette to add 5 mL of starch solution to the same beaker. Mix by pipetting the solution up and down six times.


4. Using the same pipette that you used to mix the dialysis bag solution, remove 2 mL of the dialysis bag solution and place it in a clean beaker. This sample will serve as your positive control for glucose and starch.



a. Dip one of the glucose test strips into the 2 mL of glucose/starch solution in the third beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your positive control for glucose.


b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL of glucose/starch solution into the third beaker. After one minute has passed, record the final color of the glucose/starch solution in the beaker in Table 3. This is your positive control for starch.



5. Using a clean pipette, remove 2 mL of water from the 82 mL of water you placed in a beaker in Step 2, and place it in a clean beaker. This sample will serve as your negative controls for glucose and starch.



a. Dip one of the glucose test strips into the 2 mL of water in the beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your negative control for glucose.


b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL in the beaker. After one minute has passed, record the final color of the water in the beaker in Table 3. This is your negative control for starch.



Note:The color results of these controls determine the indicator reagent key. You must use these results to interpret the rest of your results.


6. After at least ten minutes have passed, remove the dialysis tube and close one end by folding over 3.0 cm of one end (bottom). Fold it again and secure with a rubber band (use two rubber bands if necessary).


7. Test to make sure the closed end of the dialysis tube will not allow solution to leak out. Dry off the outside of the dialysis tube bag with a cloth or paper towel. Then, add a small amount of water to the bag and examine the rubber band seal for leakage. Be sure to remove the water from the inside of the bag before continuing.


Using the same pipette that was used to mix the solution in Step 3, transfer 8 mL of the dialysis bag solution to the prepared dialysis bag.

Figure 4: Step 9 reference.


Figure 4:Step 9 reference.


9. Place the filled dialysis bag in the 100 mL beaker filled with 80 mL of water, leaving the open end draped over the edge of the beaker as shown in Figure 4.


10.Allow the solution to sit for 60 minutes. Clean and dry all materials except the beaker holding the dialysis bag.


11.After the solution has diffused for 60 minutes, remove the dialysis bag from the beaker and empty the contents of the bag into a clean, dry beaker. Label the beaker “final dialysis bag solution.”


12.Test the final dialysis bag solution for the presence of glucose by dipping one glucose test strip into the dialysis bag. Wait one minute before reading the results of the test strip. Record your results for the presence of glucose in Table 4.


13.Test for the presence of starch by adding 2 mL IKI. After one minute has passed, record the final color in Table 4.


14.Use a pipette to transfer 8 mL of the water in the beaker to a clean beaker. Test the beaker water for the presence of glucose by dipping one glucose test strip into the beaker. Wait one minute before reading the results of the test strip, and record the results in Table 4.


15.Test for the presence of starch by adding 2 mL of IKI to the beaker water. Record the final color of the beaker solution in Table 4.










Table 3: Indicator Reagent Data


Indicator


Starch Positive

Control (Color)


Starch Negative

Control (Color)


Glucose Positive

Control (Color)


Glucose Negative

Control (Color)


Glucose Test Strip


n/a


n/a






IKI Solution






n/a


n/a




Table 4: Diffusion of Starch and Glucose Over Time


Indicator


Dialysis Bag After 60 Minutes


Beaker Water After 60 Minutes


IKI Solution






Glucose Test Strip








Post-Lab Questions


1. Why is it necessary to have positive and negative controls in this experiment?












2. Draw a diagram of the experimental set-up. Use arrows to depict the movement of each substance in the dialysis bag and the beaker.










3. Which substance(s) crossed the dialysis membrane? Support your response with data-based evidence.










4. Which molecules remained inside of the dialysis bag?






5. Did all of the molecules diffuse out of the bag into the beaker? Why or why not?














Experiment 1: Diffusion through a Liquid


In this experiment, you will observe the effect that different molecular weights have on the ability of dye to travel through a viscous medium.


Materials


1 60 mL Corn Syrup Bottle, C12H22O11

Red and Blue Dye Solutions (Blue molecular weight = 793 g/mole; red molecular weight = 496 g/mole)

(1) 9 cm Petri Dish (top and bottom halves)




Ruler

*Stopwatch

*Clear Tape


*You Must Provide






Procedure


1. Use clear tape to secure one-half of the petri dish (either the bottom or the top half) over a ruler. Make sure that you can read the measurement markings on the ruler through the petri dish. The dish should be positioned with the open end of the dish facing upwards.





Carefully fill the half of the petri dish with corn syrup until the entire surface is covered.

Develop a hypothesis regarding which color dye you believe will diffuse faster across the corn syrup and why. Record this in the post-lab questions.

Place a single drop of blue dye in the middle of the corn syrup. Note the position where the dye fell by reading the location of its outside edge on the ruler.

Record the location of the outside edge of the dye (the distance it has traveled) every ten seconds for a total of two minutes. Record your data in Table 1 and use your results to perform the calculations in Table 2.

Repeat the procedure using the red dye, the unused half of the petri dish, and fresh corn syrup.



Table 1: Rate of Diffusion in Corn Syrup


Time (sec)


Blue Dye


Red Dye


Time (sec)


Blue Dye


Red Dye


10






70






20






80






30






90






40






100






50






110






60






120




















Table 2: Speed of Diffusion of Different Molecular Weight Dyes


Structure


Molecular Weight


Total Distance

Traveled (mm)


Speed of Diffusion

(mm/hr)*


Blue Dye








Red Dye








*Multiply the total distance diffused by 30 to get the hourly diffusion rate




Post-Lab Questions


Record your hypothesis from Step 3 here. Be sure to validate your predictions with scientific reasoning.







Which dye diffused the fastest?







Does the rate of diffusion correspond with the molecular weight of the dye?











Does the rate of diffusion change over time? Why or why not?









Examine the graph below. Does it match the data you recorded in Table 2? Explain why, or why not. Submit your own plot if necessary.



https://nuonline.neu.edu/bbcswebdav/pid-9451339-dt-content-rid-14232100_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s001.html






https://nuonline.neu.edu/bbcswebdav/pid-9451340-dt-content-rid-14232401_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s002.html




https://nuonline.neu.edu/bbcswebdav/pid-9451341-dt-content-rid-14232402_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s003.html






 

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
24/7 Assignment Help

ONLINE

24/7 Assignment Help

$30
Great work within deadline

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

24/7 Assignment Help
Writer Writer Name Offer Chat
24/7 Assignment Help

ONLINE

24/7 Assignment Help

Please share further details to proceed.

$30 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Belief as to the truth of something - Michelin fleet solutions vs the conventional tire selling model - Cushion stuffing crossword clue - Cybertext building blocks of accounting a financial perspective - Art spiegelman net worth - Funnel shaped residual plot - Future of the juvenile justice system proposal presentation - Third party car insurance woolworths - Project proposal - Speech - Kirsch ripplefold drapery hardware - Anchorage port stephens accommodation - The beatles eleanor rigby lyrics - Explorations in conceptual chemistry activity 6a answers - The standard unqualified audit report of a public company - Criminal podcast the case of tony the tiger worksheet pdf - Biology Week 5 - Embedded systems design unimelb - Unlike a traditional performance appraisal a 360 degree review quizlet - Good research paper topics for american history - Ashford university human resources department - Motion detector physics lab answers - Do you ever feel so paper thin - 248 woolooware road burraneer - Leaders high in initiating structure engage in - Nals advanced manual for the legal professional 13th edition - Water rocket launcher designs - Gaia cs umass edu wireshark labs - Keystone computers and networks accounting issues case solution - Paradox alarm system manual - 25639 larkins street southfield mi - Publishers of a magazine wish to determine what proportion - HSE 7-1 - Wk8 DQ - Business Research Methodology - A child called it quotes with page number - Outputs and outcomes - Universal compensable factors - Journal Article - Math 533 project part b - Solve the equation show your work 3x 45 - Bilingualism in america hayakawa answers - ZAK: Discussion 2 - Meeting a new team member british council - Growing annuity ba ii plus - Chemistry for the ib diploma workbook answers pdf - Why did the texas constitution establish a plural executive - Introduction to sociology seagull tenth edition online - To the historian, the printed sermon by jonathan edwards (document 3) provides evidence that - The great divorce chapter 5 - Mustache hat jean arp - Smith chart normalized impedance - THE FOUNDATION OF HEALTH CARE LAW AND ETHICS IN THE UNITED STATES - Discussion - Hannah baker 13 reasons why tapes - Short essay on garbage collector - Derivative of cos 2x 2 - Cytosine arabinoside mechanism of action - Human resource - 2 tim 3 1-9 - Philosophy Essay - Mpsj parking saturday need to pay - How would the following transactions affect us exports - Parelli level 3 freestyle audition - Zone 1 and 2 melbourne - Document Preparation Assignment #2 - Milestone 3 - Adventure Game Outline: Module Development - Project Work Breakdown Schedule - Apple watch series 5 target market - Google case study human resource management - Which of the following statements best defines the term operon - Student support unit sussex - Harvard business publishing simulation answers - Priam painter women at a fountain house - Social responsibility of nike company - Cairns state high school catchment - Lamp post spigot reducer - Cirque du soleil innovation strategy - Paralegal certificate course workbook margaret kirk - In the upward sloping segment of the aggregate supply curve - The globalization of world politics third edition - How to calculate additional stock issued - Atmospheric relief valve surface condenser - How to draw a climate - History 101 histrory od american civilization 1 - Bettini v gye warranty - Centi milli micro nano - How old is gerry harvey - International marketing chapter 7 - Marriages and families intimacy diversity and strengths 7th edition pdf - Alpha bravo charlie delta echo foxtrot - 36v house solar panel to 12v battery - How much is it to buy a sonic franchise - Job redesign approaches - Need 600+ words and 1+ schoarly references in Apa format with no plagiarism follow instructions below. - How to make a tv commercial script - Which one of the following results from the latest decision round are least important in providing - Why are tendons important to a muscle's ability to move - Altex inc manufactures two products car wheels and truck wheels - Week 2 Quiz Questions - Lab relative and absolute dating lab report