Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Linear regression project ideas

18/12/2020 Client: saad24vbs Deadline: 10 Days

Curve-fitting Project - Linear Model (due at the end of Week 5)


Instructions


For this assignment, collect data exhibiting a relatively linear trend, find the line of best fit, plot the data and the line, interpret the slope, and use the linear equation to make a prediction. Also, find r2 (coefficient of determination)


and r (correlation coefficient). Discuss your findings. Your topic may be that is related to sports, your work, a hobby, or something you find interesting. If you choose, you may use the suggestions described below.


A Linear Model Example and Technology Tips are provided in separate documents.


Tasks for Linear Regression Model (LR)

(LR-1) Describe your topic, provide your data, and cite your source. Collect at least 8 data points. Label appropriately. (Highly recommended: Post this information in the Linear Model Project discussion as well as in your completed project. Include a brief informative description in the title of your posting. Each student must use different data.)


The idea with the discussion posting is two-fold: (1) To share your interesting project idea with your classmates, and (2) To give me a chance to give you a brief thumbs-up or thumbs-down about your proposed topic and data. Sometimes students get off on the wrong foot or misunderstand the intent of the project, and your posting provides an opportunity for some feedback. Remark: Students may choose similar topics, but must have different data sets. For example, several students may be interested in a particular Olympic sport, and that is fine, but they must collect different data, perhaps from different events or different gender.


(LR-2) Plot the points (x, y) to obtain a scatterplot. Use an appropriate scale on the horizontal and vertical axes and be sure to label carefully. Visually judge whether the data points exhibit a relatively linear trend. (If so, proceed. If not, try a different topic or data set.)


(LR-3) Find the line of best fit (regression line) and graph it on the scatterplot. State the equation of the line. (LR-4) State the slope of the line of best fit. Carefully interpret the meaning of the slope in a sentence or two.


(LR-5) Find and state the value of r2, the coefficient of determination, and r, the correlation coefficient. Discuss your findings in a few sentences. Is r positive or negative? Why? Is a line a good curve to fit to this data? Why or why not? Is the linear relationship very strong, moderately strong, weak, or nonexistent?


(LR-6) Choose a value of interest and use the line of best fit to make an estimate or prediction. Show calculation work.


(LR-7) Write a brief narrative of a paragraph or two. Summarize your findings and be sure to mention any aspect of the linear model project (topic, data, scatterplot, line, r, or estimate, etc.) that you found particularly important or interesting.


You may submit all of your project in one document or a combination of documents, which may consist of word processing documents or spreadsheets or scanned handwritten work, provided it is clearly labeled where each task can be found. Be sure to include your name. Projects are graded on the basis of completeness, correctness, ease in locating all of the checklist items, and strength of the narrative portions.


Here are some possible topics:


Choose an Olympic sport -- an event that interests you. Go to http://www.databaseolympics.com/ and collect data for winners in the event for at least 8 Olympic games (dating back to at least 1980). (Example: Winning times in Men's 400 m dash). Make a quick plot for yourself to "eyeball" whether the data points exhibit a relatively linear trend. (If so, proceed. If not, try a different event.) After you find the line of best fit, use your line to make a prediction for the next Olympics (2014 for a winter event, 2016 for a summer event ).


Choose a particular type of food. (Examples: Fish sandwich at fast-food chains, cheese pizza, breakfast cereal) For at least 8 brands, look up the fat content and the associated calorie total per serving. Make a quick plot for yourself to "eyeball" whether the data exhibit a relatively linear trend. (If so, proceed. If not,


try a different type of food.) After you find the line of best fit, use your line to make a prediction corresponding to a fat amount not occurring in your data set.) Alternative: Look up carbohydrate content and associated calorie total per serving.


Choose a sport that particularly interests you and find two variables that may exhibit a linear relationship. For instance, for each team for a particular season in baseball, find the total runs scored and the number of wins. Excellent websites: http://www.databasesports.com/ and http://www.baseball-reference.com/


(Sample) Curve-Fitting Project - Linear Model: Men's 400 Meter Dash Submitted by Suzanne Sands


(LR-1) Purpose: To analyze the winning times for the Olympic Men's 400 Meter Dash using a linear model


Data: The winning times were retrieved from http://www.databaseolympics.com/sport/sportevent.htm?sp=ATH&enum=130 The winning times were gathered for the most recent 16 Summer Olympics, post-WWII. (More data was available, back to 1896.)


Page 4 of 4


Summer Olympics: Men's 400 Meter Dash Winning Times Year Time (seconds) 1948 46.20 1952 45.90 1956 46.70 1960 44.90 1964 45.10 1968 43.80 1972 44.66 1976 44.26 1980 44.60 1984 44.27 1988 43.87 1992 43.50 1996 43.49 2000 43.84 2004 44.00 2008 43.75DATA:


(LR-2) SCATTERPLOT:


2008 2000 1992 1984 1976 Year 1968 1960 1952 43.00 1944 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 Summer Olympics: Men's 400 Meter Dash Winning Times Time (seconds)As one would expect, the winning times generally show a downward trend, as stronger competition and training methods result in faster speeds. The trend is somewhat linear.


2008 2000 1992 1984 1976 Year 1968 1960 1952 43.00 1944 43.50 44.00 44.50 45.00 45.50 y = -0.0431x + 129.84 R² = 0.6991 46.00 46.50 47.00 Summer Olympics: Men's 400 Meter Dash Winning Times Time (seconds)(LR-3)

Line of Best Fit (Regression Line)

y = 0.0431x + 129.84 where x = Year and y = Winning Time (in seconds)

(LR-4) The slope is 0.0431 and is negative since the winning times are generally decreasing.


The slope indicates that in general, the winning time decreases by 0.0431 second a year, and so the winning time decreases at an average rate of 4(0.0431) = 0.1724 second each 4-year Olympic interval.


(LR-5) Values of r2 and r:


r2 = 0.6991


We know that the slope of the regression line is negative so the correlation coefficient r must be negative.

𝑟𝑟 = −√0.6991 = −0.84


Recall that r = 1 corresponds to perfect negative correlation, and so r = 0.84 indicates moderately strong negative correlation (relatively close to -1 but not very strong).


(LR-6) Prediction: For the 2012 Summer Olympics, substitute x = 2012 to get y = 0.0431(2012) + 129.84  43.1 seconds.


The regression line predicts a winning time of 43.1 seconds for the Men's 400 Meter Dash in the 2012 Summer Olympics in London.


(LR-7) Narrative:


The data consisted of the winning times for the men's 400m event in the Summer Olympics, for 1948 through 2008. The data exhibit a moderately strong downward linear trend, looking overall at the 60 year period.


The regression line predicts a winning time of 43.1 seconds for the 2012 Summer Olympics, which would be nearly 0.4 second less than the existing Olympic record of 43.49 seconds, quite a feat!


Will the regression line's prediction be accurate? In the last two decades, there appears to be more of a cyclical (up and down) trend. Could winning times continue to drop at the same average rate? Extensive searches for talented potential athletes and improved full-time training methods can lead to decreased winning times, but ultimately, there will be a physical limit for humans.


Note that there were some unusual data points of 46.7 seconds in 1956 and 43.80 in 1968, which are far above and far below the regression line.


If we restrict ourselves to looking just at the most recent winning times, beyond 1968, for Olympic winning times in 1972 and beyond (10 winning times), we have the following scatterplot and regression line.


Time (seconds)


Year 2008 2000 1992 1984 1976 44.20 44.00 43.80 43.60 43.40 1968 y = -0.025x + 93.834 R² = 0.5351 44.60 44.40 Summer Olympics: Men's 400 Meter Dash Winning Times 44.80Using the most recent ten winning times, our regression line is y = 0.025x + 93.834.


When x = 2012, the prediction is y = 0.025(2012) + 93.834  43.5 seconds. This line predicts a winning time of 43.5 seconds for 2012 and that would indicate an excellent time close to the existing record of 43.49 seconds, but not dramatically below it.


Note too that for r2 = 0.5351 and for the negatively sloping line, the correlation coefficient is 𝑟𝑟 = −√0.5351 = −0.73, not as strong as when we considered the time period going back to 1948. The most recent set of 10 winning times do not visually exhibit as strong a linear trend as the set of 16 winning times dating back to 1948.


CONCLUSION:


I have examined two linear models, using different subsets of the Olympic winning times for the men's 400 meter dash and both have moderately strong negative correlation coefficients. One model uses data extending back to 1948 and predicts a winning time of 43.1 seconds for the 2012 Olympics, and the other model uses data from the most recent 10 Olympic games and predicts 43.5 seconds. My guess is that 43.5 will be closer to the actual winning time. We will see what happens later this summer!


UPDATE: When the race was run in August, 2012, the winning time was 43.94 seconds.

Scatterplots, Linear Regression, and Correlation


When we have a set of data, often we would like to develop a model that fits the data.


First we graph the data points (x, y) to get a scatterplot. Take the data, determine an appropriate scale on the horizontal axis and the vertical axis, and plot the points, carefully labeling the scale and axes.


Summer Olympics: Men's 400 Meter Dash Winning Times Year (x) Time(y) (seconds) 1948 46.20 1952 45.90 1956 46.70 1960 44.90 1964 45.10 1968 43.80 1972 44.66 1976 44.26 1980 44.60 1984 44.27 1988 43.87 1992 43.50 1996 43.49 2000 43.84 2004 44.00 2008 43.75


Burger


Fat (x) (grams)


Calories (y)


Wendy's Single


20


420


BK Whopper Jr.


24


420


McDonald's Big Mac


28


530


Wendy's Big Bacon Classic


30


580


Hardee's The Works


30


530


McDonald's Arch Deluxe


34


610


BK King Double Cheeseburger


39


640


Jack in the Box Jumbo Jack


40


650


BK Big King


43


660


BK King Whopper


46


730


Data from 1997


If the scatterplot shows a relatively linear trend, we try to fit a linear model, to find a line of best fit.


We could pick two arbitrary data points and find the line through them, but that would not necessarily provide a good linear model representative of all the data points.


A mathematical procedure that finds a line of "best fit" is called linear regression. This procedure is also called the method of least squares, as it minimizes the sum of the squares of the deviations of the points from the line. In MATH 107, we use software to find the regression line. (We can use Microsoft Excel, or Open Office, or a hand-held calculator or an online calculator --- more on this in the Technology Tips topic.)


Linear regression software also typically reports parameters denoted by r or r2.


The real number r is called the correlation coefficient and provides a measure of the strength of the linear relationship.


r is a real number between 1 and 1.


r = 1 indicates perfect positive correlation --- the regression line has positive slope and all of the data points are on the line.


r = 1 indicates perfect negative correlation --- the regression line has negative slope and all of the data points are on the line




The closer |r| is to 1, the stronger the linear correlation. If r = 0, there is no correlation at all. The following examples provide a sense of what an r value indicates.




Source: The Basic Practice of Statistics, David S. Moore, page 108.


Notice that a positive r value is associated with an increasing trend and a negative r value is associated with a decreasing trend. The strongest linear models have r values close to 1 or close to 1.


The nonnegative real number r2 is called the coefficient of determination and is the square of the correlation coefficient r.


Since 0  |r|  1, multiplying through by |r|, we have 0  |r|2  |r| and we know that 1  r  1. So, 0  r2  1. The closer r2 is to 1, the stronger the indication of a linear relationship.


Some software packages (such as Excel) report r2, and so to get r, take the square root of r2 and determine the sign of r by observing the trend (+ for increasing,  for decreasing).


RESOURCES: Desmos Graphing Calculator and Linear Regression


You can use the free online Desmos Graphing Calculator to produce a scatterplot and find the regression line and correlation coefficient.


Go to https://www.desmos.com/calculator and launch the calculator.



Select "table" from the menu at the upper left.




Page 1 of 7


Data for Project Example (Men's 400 Meter Dash) has been entered. Regression help can be accessed via the "?" icon.




Select "expression" from the menu at the upper left.




Type y1 ~ mx1 + b and the values of r2, r, m, and b automatically appear.




Selecting the tool at the upper right, you can then adjust the scales on the x and y axes and create labels.


You can give your graph a name. In order to save your graph, sign in with a free account and click the share button. If you share the given link, then by followiing the link, the graph can be opened and manipulated. If you click the Image button, then you can save the graph as a file.




After clicking the Image button, you can view the graph as a stand-alone image, and select from several options to save.




To complete the Linear Model portion of the project, you will need to use technology (or hand-drawing) to create a scatterplot, find the regression line, plot the regression line, and find r and r2.

Below are some options, together with some videos. Each video is limited to 5 minutes or less. It takes a bit of time for the video to initially download. When playing the video, if you want to slow it down to read the text, hit the pause icon. (If you run the mouse over the bottom of the video screen, the video controls will appear.) You may need to adjust the volume.


The basic options are to:


(1) Generate by hand and scan.


(2) Use Microsoft Excel.


Visit Scatterplot - Start (VIDEO) to see how to create a scatter plot using Microsoft Excel and format the axes.


Visit Scatterplot - Regression Line (VIDEO) to see how to add labels and title to the scatterplot, how to generate and graph the line of best fit (regression) and obtain the value of r2 in Microsoft Excel.


Using Excel to obtain precise values of slope m and y-intercept b of the regression line: Video, Spreadsheet


(3) Use Open Office.

(4) Use a hand-held graphing calculator (See section 2.5 in your textbook for help with Texas Instruments hand-held calculators.)

(5) Use a free online tool


Use the free Desmos calculator: See DesmosLinearRegressionGuide.pdf to view how to generate a scatterplot and carry out linear regression.


The result of the free tool might not be as nice looking as the Microsoft Excel version, but it is free. The Linear Project Example uses Microsoft Excel.

Applied Sciences

Architecture and Design

Biology

Business & Finance

Chemistry

Computer Science

Geography

Geology

Education

Engineering

English

Environmental science

Spanish

Government

History

Human Resource Management

Information Systems

Law

Literature

Mathematics

Nursing

Physics

Political Science

Psychology

Reading

Science

Social Science

Home

Blog

Archive

Contact

google+twitterfacebook

Copyright © 2019 HomeworkMarket.com

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Helping Hand
Homework Guru
University Coursework Help
Top Essay Tutor
Writer Writer Name Offer Chat
Helping Hand

ONLINE

Helping Hand

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$40 Chat With Writer
Homework Guru

ONLINE

Homework Guru

Hi dear, I am ready to do your homework in a reasonable price and in a timely manner.

$42 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$42 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

I have more than 12 years of experience in managing online classes, exams, and quizzes on different websites like; Connect, McGraw-Hill, and Blackboard. I always provide a guarantee to my clients for their grades.

$45 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Golden touch question answer - Speedy delivery systems can buy a piece - The curious researcher 6th edition pdf - Extreme close up effect on audience - Asean strategic action plan for sme development 2016 2025 - Veltri corporation is working on its direct - Author's purpose pie activity - Picot statement and literature search week 1 - Oedipus rex chorus analysis - Strategic staffing at chern's a case study - Vietnam veterans counselling service - Www ebook777 com medical books - Saml 1.1 assertion is missing immutableid of the user - The nature of dreaming - Working holiday visa france for australian - How to make elephant toothpaste without potassium iodide - Lilly pilly loop trail - Review on hbr course pack - How to date a browngirl junot diaz analysis - Leadership theories matrix ldr 300 - Cisco ucs c220 m3 installation guide - Firewall - How to find job seeker id - Yehoram gaon shalom lach eretz nehederet - Cisco aspire networking academy edition walkthrough - What is the barometric pressure in phoenix - Sweet box caroline springs - Coca cola balance sheet 2012 - Qfd in software engineering - How many ounces in a medium jamba juice smoothie - Practical Connection - What plus what equals 4987 - Human Resource Management - What is the ktea 3 - Evaluate the iterated integral. 1 0 s4 cos(s5) dt ds 0 - School Nurse D3 - Characterisation in the giver - Country manager simulation quiz answers - Osmosis a way of preserving food - Glencoe virtual half life lab answer key - Compare and contrast the biological and behaviourist approach - Business and Society 400 word essay - How to write isotope notation - 500 ml volumetric flask uncertainty - Fluke 1520 user manual - Financial accounting homework answers - Formal analysis of a movie scene - Ib math command terms - 100x100 rough sawn post - High fliers university rankings - What historical events influenced fahrenheit 451 - Geography 3 4 study design - Bank account program in c++ using structure - Data Visualization - Ccou 301 research paper - Markers micador colourfun 12's - IT Doesn’t Matter - Ib chemistry chapter 2 - Software Models - Dq - Research paper - Chemistry ice table practice problems - Royce's top 10 principles for modern software management - A lot of noise and no walnuts idiom - Arabella faded crowned rosette rug - Mt103 field 72 format - Leadership Gibb’s reflective cycle - Gosforth valley medical practice - Discussion - The drover's wife henry lawson - Understanding Interpersonal Relationship - Tennis elbow exercises mayo clinic - Ucas tv personal statement - Discussion Post due08/30 10et - Everything begins and ends at the kentucky club summary - If an adjustment is needed for prepaid expenses the - Wk 4 - Emerging Trends in Educational Technology - Employer associations examples australia - Final Paper - Xs l7t spark plug - Ear swab culture procedure - Ati case study teamwork and collaboration - Zzi sh enter code - Leadership's Role in Organizational Change - The public sphere worksheet answers - Discussion reply of analysis - George grosz grey day - Gluten free pain au chocolat tesco - Past tense for send - Shark tank season 9 full episodes online - Texas roadhouse eeoc lawsuit verdict - Meta commentary phrases - Nutritioncalc plus dietary analysis tool - Question Bank for the Mid-Term Exams - Star wars ccg players committee - Please hel with Anatomy and Physiology - What are some of the major security threats caused by illegal immigration? - Charging by friction definition - Bloomberg market concepts answers - Leggos italian style sausage agnolotti