The Product (a metal bracket)
GURE 4.2 Batch -~,-(metal brackets).
Chapter 4 Process Selection 65
works closely with operations in making these investments. Also, marketing must be geared toward the mass appeal of the resulting high-volume product.
Batch Flow Batch flow is characterized by production of the product in batches or lots. Each batch of the product travels together from one operation or work center to an- other. A work center is a group of similar machines or processes used to make the product.
Figure 4.2 shows various low-volume brackets that are made using a batch pro- cess. In this simple example, three differently shaped brackets-A, B, and C-flow through the four work centers. Notice how bracket A requires work in all four work centers, bracket B requires only cutting, bending, and painting, and bracket C requires cutting, drilling, and painting. One characteristic of a batch operation is that it can be used to make many different types of products, and so more variety is typical than on an assembly line. Each of these products can have a different flow path, and some products actually skip certain work centers. As a result, the flow is jumbled and intermittent. Contrast this to the flow of a line process, which is regular and sequentiaL
Batch operations often use general-purpose equipment that is not specialized to make just one particular product. This offers flexibility. Labor is more skilled and flexib le in its ability to make different products. As a result, a batch opera- tion is configured with both equipment and labor to be more flexible than an assembly-line process. Lot sizes can be quite variable in size, from hundreds down to as few as one unit. As a result, batch processes can be configured to handle low-volume orders.
Product A Product B Product C
\l---.... ~ Batch A --- .BatchB
....... BatchC
66 Part Two Process Design
The jumbled flow of a batch operation results in considerable production sched- uling and inventory challenges. When loaded to nearly full capacity, the batch op- eration will typically have high inventories as jobs wait in line to be processed. High capacity utilization results in job interference between the various jobs as they wait for labor or equipment that is assigned to another job at the time. This results in a loss of efficiency in a batch operation.
A batch operation uses a so-called process layout because the machines and labor are organized by process types into work centers. The assembly-line process, however, uses a product layout because the machines and labor are organized ac- cording to the product flow itself. An example of a process layout is the typical high school, where classrooms are organized according to subjects (or processes) such as English, math, and chemistry. The students flow through the facility in batches (classes), going from one process to the next.
Batch operations are used when the volume is not high or there are many differ- ent products. In this case, the batch operation is the most economical and incurs the least risk. Examples of products made in batch operations are furniture, boats, dishware, and other products with large variety and low to moderate volumes. Furniture making, for example, requires many different styles and options. Sofas are ordered by customers and also ordered for stock. Each sofa may have a differ- ent fabric and may have different features on the arms or back and different lengths. As a result, there are a tremendous number of variations that are made using a small batch process or even made one at a time.
Job Shop Job shops make products to customer order by using a process layout. Thus, we consider the job shop a special case of the batch process. In a job shop the product is made in batches, usually in small lot sizes, but the product must be made to customer order.
Like the batch process, a job shop uses general-purpose equipment and has a jumbled flow. It has high flexibility for product mix and volume of production, but the costs are generally higher since the volume and standardization are low. Typi- cal products produced in a job shop include plastic parts, machine components, electronic parts, and sheet metal parts that are made-to-order.
Project The project form of operations is used for unique or creative products. Examples of projects are concerts, construction of buildings, and production of large aircraft. Technically speaking, the product doesn't flow in a project since materials and labor are brought to the project site and the project itself is stationary. Projects are characterized by difficult planning and scheduling problems since the product may not have been made before. Also, projects are difficult to automate, though some general-purpose equipment may be used. Labor must be highly skilled because of the unique nature of the product or service being made.
In the project form of operations each unit is made individually and is different from the other units. Projects are used when the customer desires customization and uniqueness. Generally speaking, the cost of production for projects is high and sometimes difficult to control. This is the case because the project may be dif- ficult to define in all its details, and innovation may be required during the course of production.
TABLE 4.1 Process
Characteristics
Chapter 4 Process Selection 67
Boeing makes large aircraft by using a project process. Each airplane is assem- bled at a fixed site within the factory with materials and labor brought to the site. A complex schedule is made that must balance work across all the different aircraft being produced. The tasks and resources must be sequenced and scheduled to meet the required delivery dates of the individual planes. The construction indus- try uses projects to construct buildings, roads, and dams. Service industries also use projects for fund-raising events, political campaigns, concerts, and art fairs.
Discussion of Process Types The characteristics of the five processes we have been discussing-continuous, assembly line, batch, job shop, and project- are summarized in Table 4.1. This table makes direct comparisons among the types of processes. Notice that continuous and assembly-line operations have relatively low-skilled labor and high automation, whereas batch, job shop, and project operations are the opposite. Also, the objectives and the product characteristics are at opposite extremes for these processes.
One way to measure the efficiency of a process is the throughput ratio (TR):
Total processing time for the job TR = . . . X 100%
Total time m operatwns
In the numerator of the throughput ratio is total processing time for the job, which includes only the time the job actually spends being processed by machines or labor, excluding any waiting time between operations. The denominator includes the total time the job spends in operations, including both processing and waiting time. Most batch and job shop operations have TRs of 10 percent or 20 percent, rarely higher than 40 percent. This means that a typical job spends most of its time waiting to be processed relative to the actual processing time. In contrast,
Continuous and Batch and Characteristics Assembly Line Job Shop Project
Product
Order type Continuous or Batch Single unit large batch
Flow of product Sequenced Jumbled None Product variety Low High Very high Market type Mass Custom Unique Volume High Medium to low Single unit
Labor
Skills Low High High Task type Repetitive Nonroutine Non routine Pay Medium High High
Capital
Investment High Medium Medium Inventory Low High Little Equipment Special ·purpose General purpose General purpose
Objectives
Flexibil ity Low Medium High Cost Low Medium High Quality Conformance Conformance Conformance Delivery On time On time On time
68 Part Two Process Design
continuous and assembly-line processes have TRs of 90 to 100 percent. The through- put ratio represents the proportion of time in operations during which value is actively being added to the job.
At this point, examples from the housing industry may help solidify some of the process choices. At the project end of the continuum is the custom-built house. A unique plan for it may be drawn by an architect, or existing plans may be modi- fied for each house built. Since the construction of the house is customized, plan- ning, sequencing, and control of various construction activities often become major challenges. The customer is highly involved in all stages of construction, and sometimes the plans are modified while the house is being built. The process is labor-intensive, time-consuming, and costly, but it is very flexible. General- purpose equipment is used to complete the work.
The batch process is characterized by the production of similar houses in groups. In this case, the customer can select one of several standard houses with only minor options for things such as colors, fixtures, and carpets. The company may buy materials in large lots, and specialized equipment or jigs may be used to speed up construction. A crew that is very familiar with the type of house being built is brought in, and the entire structure-except for final touches-may be put up in only a few months. Such a house is usually less expensive per square foot than a custom-built project house, but there is less flexibility in operations.
The assembly-line method of house production is characterized by modular or factory operations. Standard houses are produced i.p. sections, in a factory, by rela-
tively cheap labor. The use of expensive plumbers, carpenters, and electricians largely is avoided by installing complete electrical and plumbing sys- tems at the factory. Special-purpose equipment is used in the factory to cut costs still further. After being built on an assembly line, the house sections are brought to the site and erected in a few days, using a crane. These modular houses are typically the least expensive of all and provide the least flexibility in customer choice.
House construction can be completed using various types of processes.
Obviously, a company faces a major strategic decision in choosing the type of process to use for the construction of houses. All three approaches may be used, but then care must be taken to sepa- rate these processes because of their different re- quirements for labor, management, and capital. If
all three types of houses are to be offered, the company may form a separate divi- sion for each type of process because each has different labor, equipment, and management requirements.
4.2 APPROACHES TO ORDER FULFILLMENT
~ "Made for You,"
Vol. III
Another critical decision for operations is how the orders from customers are fulfilled: whether the product is made-to-order, assembled-to-order, or made- to-stock. There are advantages and disadvantages to each of these. A make-to- stock (MTS) process can provide faster service to customers by delivering orders from available stock and at lower costs than a make-to-order (MTO) process.
Chapter 4 Process Selection 69
But the MTO process has higher flexibility for product customization. An assemble-to-order (ATO) process is like a hybrid of these, enabling relatively fast service to customers because there is limited work to complete once the customer order is received. It is also flexible because the customer can specify some types of customization.
In the MTO process, individual orders can be identified during production. As each order is made to the customer's specification, each job in the process is asso- ciated with a particular customer. In contrast, the MTS process is building prod- ucts for inventory, and the jobs in process are not identified for any particular customer. Thus, one can always identify an MTO or MTS process simply by look- ing at the jobs in production.
In the MTO process, the cycle of production and order fulfillment begins with the customer order. After the order has been received, the design must be completed, if it is not already done, and materials are ordered that are not already on hand or on order. Once the materials begin to arrive, the order can be processed as materials and labor are added until the order is completed. Then the order is delivered to the customer. Once the customer pays for the order, the cycle is completed.
The key performance measures of an MTO process are the lengths of time it takes to design, make, and deliver the product. This is often referred to as the lead time. Another measure of performance in an MTO environment is the percentage of orders completed on time. This percentage can be based on the delivery date the customer originally requested or the date that was promised to the customer. The date requested by the customer provides, of course, a stricter criterion.
In contrast, the MTS process has a standard product line specified by the pro- ducer, not by the customer (see Figure 4.3). The products are carried in inventory to fulfill customer demand immediately. Everything in operations is keyed to producing inventory in advance of actual demand in order to have the proper products in stock when the customer calls. The critical management tasks are fore- casting, inventory management, and production planning.
The MTS process begins with the producer specifying and producing the product. The customer then requests a product from inventory. If the product is available in inventory, it is delivered to the customer. If it is not available, a back order may be placed or the order can be lost to the firm. A back order allows the firm to fill the or- der at a future date but requires the customer to wait for the order. Ultimately, once the order is received, the customer pays for the product and the cycle is completed.
As was noted above, in an MTS process customer orders cannot be identified during production. The production cycle is being operated to replenish stock. Cus- tomer orders follow a completely separate cycle of stock withdrawal. What is be- ing produced at any point in time may bear little resemblance to what is being ordered. Production is geared to future orders and replenishment of inventory. See the differences in the production cycles in Figure 4.3.
Performance measures for an MTS process include the percentage of orders filled from inventory. This is called the service level or fill rate and is typically targeted in the range of 90 to 99 percent. Other measures are the length of time it takes to replenish inventory, inventory turnover, capacity utilization, and the time it takes to fill a back order. The objective of an MTS process is to meet the desired service level at minimum cost.
The MTS process is keyed to replenishment of inventory with order fulfillment from inventory, whereas the MTO process is keyed to customer orders. An MTO process can provide higher levels of product variety and has greater flexibility.
70 Part Two Process Design
FIGURE 4.3 MTS, MTO,andATO comparison.
Product
Make-to-Stock
Forecast orders
Finished Goods
Inventory
Production
Product
Make-to-Order
Product
Production
Assemble-to-Order
order
Pro
~ Assembly
of the order
Forecast orders
.... Inventory
of Subassemblies
~
Production of
Subassemblies
embly
The performance measures of these two processes are completely different. The MTS process is measured by service level and efficiency in replenishing inventol)~ however, the MTO process is measured by its response time to customers and the efficiency in meeting its customer orders (see Table 4.2).
Assemble-to-order (ATO) processes are a hybrid of MTO and MTS. The subas- semblies are made-to-stock, but the final assembly is made-to-order. The ATO pro- cess builds subassemblies in advance of demand. When the customer order is received, the subassemblies are taken from inventory and assembled together to fill the customer order. Figure 4.3 shows how the subassemblies are built to a fore- cast and placed in inventory. The product must be designed in a modular fashion for ATO to be used. The Operations Leader box describes how SUBWAY uses an assemble-to-order process.
~ABLE 4.2 _ lake-to-Stock
ersus Make-to- Drder
Characteristics
Product
Objectives
Main Operations Problems
Make-to-Stock
Producer-specified Low variety Inexpensive
Balance inventory, capacity, and service
Forecasting Planning production Control of inventory
Chapter 4 Process Selection 71
Make-to-Order
Customer-specified High variety Expensive
Manage delivery lead t imes and capacity
Delivery promises Delivery t ime
Many operations are moving toward assemble-to-order and make-to-order processes for standardized products, whenever possible, by reducing produc- tion lead times . If the standard product can be made quickly, it need not be placed in finished-goods inventory; instead, it can be made or quickly assem- bled w hen ordered by the customer. For example, Allen Bradley can make and ship a motor starter unit in over 300 different configurations in one day from when it is ordered. This product, which previously had been m ade-to-stock, can be assembled-to-order w ith large savings in inventory and improved cus- tomer service. Allen Bradley assembles the product with a fast and flexible assembly line.
An example of the three types of processes involves the production of diamond rings for the jewelry business. A make-to-stock process is used for rings that are
Operations Leader SUBWAY Uses Assemble~to~Order
here are more than 36,000 SUBWAY restau- rants in 97 countries around the world. The
ay they produce and serve food is an exam- :::~ l e of how a firm uses an assemble-to-order orocess.
Some sandwich in- gredients, such as the
read, meatballs, and sauces, are made to s-ock as subassemblies.
ese items are pro- :: ced either at individ- _al SUBWAY restaurants or by suppliers and then held -stock at the restaurants. Batch processes are used to - ake these items as efficiently as possib le while en- :~ ing that standards of quality are met.
When a customer comes in to order a sand- wich, an ATO process is used. The customer spec- ifies the type of bread to use as well as each of the sandwich ingredi- ents. Each sandwich can be custom ized to meet customer requests ex- actly. This is the advan- tage of an ATO process.
Using an ATO process ensures that SUBWAY operates both efficiently and effectively. Some
food is produced in batches, but the final product- the sandwich the customer receives-is produced one at a time.
Source: www.subway.com, 2012.
72 Part Two Process Design
FIGURE 4.4 Order penetration point. MTO MTO ATO MTS
~--.- .... -.. -.. -.-T T T _...
Supplier .. ') Fabrication I Assembly ') Distribution I I I
carried in finished-goods inventory by the jewelry store. In this case, the customer buys one of the rings from the jeweler 's stock. An assemble-to-order process is used when the customer selects the stone and then makes a separate selection of a stock ring setting. The jeweler will then assemble the ring components in an assemble-to-order process. The make-to-order process is illustrated by jewelers who make custom settings to the customer's design. The setting and the stone are matched to make a unique ring.
The type of customer order, whether MTS, MTO, or ATO, determines the order penetration point in the supply chain where the product is linked to a specific customer order.1 There are four possibilities for the placement of the order penetra- tion point, as shown in Figure 4.4. For MTS operations the point is after final assem- bly is completed; therefore, the customer can only select the product from what is available in inventory. For ATO the order penetration point is after fabrication and before final assembly. Since the product is assembled after the order is placed, the customer can specify some customization in terms of the modules he or she selects. For MTO operations the order penetration point is either before fabrication or before ordering materials from the supplier in cases in which unique materials or compo- nents are needed. For MTO, many types of customization are possible, but the lead time to the customer can be longer and the product is typically more costly.
4.3 PROCESS SELECTION DECISIONS
~ "Burton
Snow boards. Manufacturing
Design/' Vol. XIV
We have been discussing two dimensions that can be used for process classification purposes: product flow and approaches to order fulfillment. These dimensions are used to construct the six-cell matrix shown in Table 4.3. This matrix contains the six combinations used in practice. Multiple combinations may be used by a single firm, depending on the products and volumes required by the market. However, if more than one process is used in a single facility, the plant-within-a-plant concept may be employed to maintain focus, as described later in this chapter.
All six combinations are encountered in industry. Although it is common for an assembly-line operation to make-to-stock, it can also assemble-to-order. For ex- ample, an automobile assembly line is used to produce a large variety of different automobile options for particular customers, as well as cars that are being made for dealer stock. Similarly, a project form of process commonly is used to make-to- order. However, a construction company can build a few speculation houses to stock that are sold later.
Also, note that all six combinations apply to service operations. Pure service operations produce only to customer order, but a service may be provided with
1 Sometimes also cal led the customer order decoupling point.
TABLE 4.3 Process Characteristics ~atrix
Continuous and Assembly Line
Batch and Job Shop
Project
Make-to-Stock
Automobile assembly Oil refin ing Cannery Cafeteria
Machine shop Wine Glassware factory Costume jewelry
Speculation homes Commercial paintings Noncommissioned art
Chapter 4 Process Selection 73
Make-to-Order/ Assemble-to-Order
Automobile assembly Dell computers Motorola pager Fast food
Machine shop Restaurant Hospital Custom jewelry
Buildings Movies Ships
facilitating goods that are produced to stock. For example, at McDonald's some food is made-to-stock-for example, french fries- while fulfilling the customer order is made-to-order or assemble-to-order.
In discussing the process selection decision, we shall begin with an example and generalize from there. Let us consider the contracting company mentioned in Section 4.1, which can choose to build houses using the project, batch, or assembly-line process. With any of these processes, the company can also choose to make the houses to stock or to order. What, then, are the factors that should be considered in making this choice?
First, the company should consider market conditions. The assembly-line ap- proach requires a mass market for inexpensive houses, the batch process requires a lower-volume market for medium-priced houses, and the project process re- quires a market for expensive houses. Which one of these is chosen will require discussions between marketing and operations, which are cross-functional in na- ture. Competition in the market must be considered. Can the company enter the market at the right time and gain an advantageous position? This will depend on competitors' plans and how they react to the company's process choice. In the end, matching the process to the market will be a key strategic decision, as was discussed in Chapter 2.
Second, the company should consider capital requirements. The assembly-line process will require a great deal more capital than will the project or batch flow. The assembly line requires capital to equip the factory and finance the partially com- pleted houses. If the houses are built to stock in advance of customer orders, more capital is required to finance finished-goods inventories. By contrast, construction of custom project houses requires much less capital since only one house or a few houses are being built at any one time and no factory is needed. The finance func- tion will be intimately involved with operations in making these capital decisions.