11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 1/29
HW_Week2
Due: 11:59pm on Friday, September 12, 2014
You will receive no credit for items you complete after the assignment is due. Grading Policy
Speed of a Bullet
A bullet is shot through two cardboard disks attached a distance apart to a shaft turning with a rotational period , as
shown.
Part A
Derive a formula for the bullet speed in terms of , , and a measured angle between the position of the hole in
the first disk and that of the hole in the second. If required, use , not its numeric equivalent. Both of the holes lie at
the same radial distance from the shaft. measures the angular displacement between the two holes; for instance,
means that the holes are in a line and means that when one hole is up, the other is down. Assume that
the bullet must travel through the set of disks within a single revolution.
Hint 1. Consider hole positions
The relative position of the holes can be used to find the bullet's speed. Remember, the shaft will have
rotated while the bullet travels between the disks.
Hint 2. How long does it take for the disks to rotate by an angle ?
The disks rotate by 2 in time . How long will it take them to rotate by ?
Give your answer in terms of , , and constants such as .
Hint 1. Checking your formula
If your formula is correct, when you plug 2 in for , your answer will be .
ANSWER:
2 J
R
J
J - J - R
J
R J
J R
R J
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 2/29
ANSWER:
Correct
Exercise 2.14
A race car starts from rest and travels east along a straight and level track. For the first 5.0 of the car's motion, the
eastward component of the car's velocity is given by .
Part A
What is the acceleration of the car when = 14.8 ?
Express your answer with the appropriate units.
ANSWER:
Correct
Motion of Two Rockets
Learning Goal:
To learn to use images of an object in motion to determine velocity and acceleration.
Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a timeexposure
image
where a stroboscope has illuminated the rockets at the uniform time intervals indicated.
J =
J
R
2 = R
J
T
W40 - NT U
W4 NT
4 = 7.58
NT
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 3/29
Part A
At what time(s) do the rockets have the same velocity?
Hint 1. How to determine the velocity
The diagram shows position, not velocity. You can't find instantaneous velocity from this diagram, but you
can determine the average velocity between two times and :
.
Note that no position values are given in the diagram; you will need to estimate these based on the distance
between successive positions of the rockets.
ANSWER:
Correct
Part B
At what time(s) do the rockets have the same x position?
ANSWER:
0 0
2BWH<00>-
40Ã40
0Ã0
at time only
at time only
at times and
at some instant in time between and
at no time shown in the figure
0 -
0 -
0 - 0 -
0 - 0 -
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 4/29
Correct
Part C
At what time(s) do the two rockets have the same acceleration?
Hint 1. How to determine the acceleration
The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the
rate at which velocity changes, the acceleration is related to the how much this spacing changes from one
interval to the next.
ANSWER:
Correct
Part D
The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________.
ANSWER:
at time only
at time only
at times and
at some instant in time between and
at no time shown in the figure
0 -
0 -
0 - 0 -
0 - 0 -
at time only
at time only
at times and
at some instant in time between and
at no time shown in the figure
0 -
0 -
0 - 0 -
0 - 0 -
and nonzero acceleration
velocity
displacement
time
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 5/29
Correct
Part E
The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________.
ANSWER:
Correct
Part F
At what time(s) is rocket A ahead of rocket B?
Hint 1. Use the diagram
You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the
right of rocket B.
ANSWER:
Correct
Velocity from Graphs of Position versus Time
An object moves along the x axis during four separate trials. Graphs of position versus time for each trial are shown in
the figure.
and nonzero acceleration
velocity
displacement
time
before only
after only
before and after
between and
at no time(s) shown in the figure
0 -
0 -
0 - 0 -
0 - 0 -
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 6/29
Part A
During which trial or trials is the object's velocity not constant?
Check all that apply.
Hint 1. Finding velocity from a position versus time graph
On a graph of coordinate x as a function of time , the instantaneous velocity at any point is equal to the
slope of the curve at that point.
Hint 2. Equation for slope
The slope of a line is its rise divided by the run:
.
ANSWER:
Correct
The graph of the motion during Trial B has a changing slope and therefore is not constant. The other trials all
have graphs with constant slope and thus correspond to motion with constant velocity.
Part B
During which trial or trials is the magnitude of the average velocity the largest?
0
TMPQF- Y
U
Trial A
Trial B
Trial C
Trial D
11/10/2014 HW_Week2
http://session.masteringphysics.com/myct/assignmentPrintView?assignmentID=2992507 7/29
Check all that apply.
Hint 1. Definition of average velocity
Recall that
.
Then note that the question asks only about the magnitude of the velocity.
ANSWER:
Correct
While Trial B and Trial D do not have the same average velocity, the only difference is the direction! The
magnitudes are the same. Neither one is "larger" than the other, and it is only because of how we chose our
axes that Trial B has a positive average velocity while Trial D has a negative average velocity. In Trial C the
object does not move, so it has an average velocity of zero. During Trial A the object has a positive average
velocity but its magnitude is less than that in Trial B and Trial D.
± Average Velocity from a Position vs. Time Graph
Learning Goal:
To learn to read a graph of position versus time and to calculate average velocity.
In this problem you will determine the average velocity of a
moving object from the graph of its position as a function
of time . A traveling object might move at different speeds
and in different directions during an interval of time, but if we
ask at what constant velocity the object would have to travel to
achieve the same displacement over the given time interval,
that is what we call the object's average velocity. We will use
the notation to indicate average velocity over the
time interval from to . For instance, is the
average velocity over the time interval from to .
Part A
BWFSBHF WFMPDJUZ- - QPTJUJPO
UJNF
Y
U
Trial A
Trial B
Trial C
Trial D
40