Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Mechanical engineering heat transfer pdf

22/11/2021 Client: muhammad11 Deadline: 2 Day

Heat Transfer HW

Fundamentals of Heat and Mass Transfer, Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, John Wiley & Sons, Inc.

•Chapter 1: Introduction

Conduction Heat Transfer •Chapter 2: Introduction to Conduction •Chapter 3: 1D, Steady-State Conduction •Chapter 4: 2D, Steady-State Conduction •Chapter 5: Transient Conduction

Convection Heat Transfer •Chapter 6: Introduction to Convection •Chapter 7: External Flow •Chapter 8: Internal Flow •Chapter 9: Free Convection •Chapter 10: Boiling and Condensation •Chapter 11: Heat Exchangers

Radiation Heat Transfer •Chapter 12: Radiation Processes and Properties •Chapter 13: Radiation Exchange Between Surfaces

1 Mass Transfer

•Chapter 14: Diffusion Mass Transfer

Chapter-11

(Heat Exchangers)

2

Chapter-11: Heat Exchangers

3

11.1 Heat Exchanger Types 11.2 The Overall Heat Transfer Coefficient

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference

11.3.1 The Parallel-Flow Heat Exchanger 11.3.2 The Counterflow Heat Exchanger 11.3.3 Special Operating Conditions

11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method

11.4.1 Definitions

11.4.2 Effectiveness–NTU Relations 11.5 Heat Exchanger Design and Performance Calculations 11.6 Additional Considerations

11.7 Summary

Heat Exchanger Types

Heat exchangers are ubiquitous in energy conversion and utilization. They involve heat exchange between two fluids separated by a solid and encompass a wide range of flow configurations.

• Concentric-Tube Heat Exchangers

Parallel Flow Counterf low

Ø Simplest configuration. Ø Superior performance associated with counter flow.

Cross-flow Heat Exchangers

Finned-Both Fluids Unmixed

Unfinned-One Fluid Mixed the Other Unmixed

Ø For cross-flow over the tubes, fluid motion, and hence mixing,

in the transverse direction (y) is prevented for the finned tubes, but occurs for the unfinned condition.

Ø Heat exchanger performance is influenced by mixing.

Shell-and-Tube Heat Exchangers

One Shell Pass and One Tube Pass

Ø Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection.

Ø The number of tube and shell passes may be varied, e.g.:

One Shell Pass, Two Tube Passes

Two Shell Passes, Four Tube Passes

Compact Heat Exchangers

Ø Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas.

Ø Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow.

(a) Fin-tube (flat tubes, continuous plate fins) (b) Fin-tube (circular tubes, continuous plate fins) (c) Fin-tube (circular tubes, circular fins) (d) Plate-fin (single pass) (e) Plate-fin (multipass)

Overall Heat Transfer Coefficient (1/2)

• An essential requirement for heat exchanger design or performance calculations.

• Contributing factors include convection and conduction associated with the two fluids and the intermediate solid, as well as the potential use of fins on both sides and the effects of time- dependent surface fouling. • With subscripts c and h used to designate the cold and hot fluids, respectively, the most general expression for the overall coefficient is:

Overall Heat Transfer Coefficient (2/2)

Ø

→ Table 11.1

Ø

Assuming an adiabatic tip, the fin efficiency is

Ø

A Methodology for Heat Exchanger Design Calculations (Log Mean Temperature Difference (LMTD) Method)

• A form of Newton’s law of cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids:

ΔT = ΔT

1 − ΔT2

l m 1n (ΔT1 / ΔT2 )

Evaluation of depends on the heat exchanger type.

• Counter-Flow Heat Exchanger:

ΔT ≡ T − T 1 h ,1 c,1

= T

h ,i −

T

c ,o

ΔT ≡ T − T 2 h ,2 c,2

= T

h ,o −

T

c ,i

Parallel-Flow HeatΔT1≡Th,1− TExchangerc,1

= T

h ,i −

T

c ,i

Ø Note that Tc,o cannot exceed Th,o for a PF HX, but can do so for a CF HX.

Ø For equivalent values of UA and inlet temperatures,

• Shell-and-Tube and Cross-Flow Heat Exchangers:

Overall Energy Balance

• Application to the hot (h) and cold (c) fluids:

• Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid.

• Assuming no l/v phase change and constant specific heats,

Special Operating Conditions

Ø Case (a): Ch>>Cc or h is a condensing vapor – Negligible or no change in Th (Th,o=Th,i)

Ø Case (b): Cc>>Ch or c is an evaporating liquid

– Negligible or no change in Tc (Tc,o=Tc,i) Ø Case (c): Ch=Cc.

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (1/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (2/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (3/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (4/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (5/5)

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (1/3)

SCHEMATIC:

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (2/3)

<

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (3/3)

<

General Considerations

• Computational Features/Limitations of the LMTD Method:

The LMTD method may be applied to design problems for which the fluid flow rates and inlet temperatures, as well as a desired outlet temperature, are prescribed. For a specified HX type, the required size (surface area), as well as the other outlet temperature, are readily determined.

Ø If the LMTD method is used in performance calculations for which both outlet temperatures must be determined from knowledge of the inlet temperatures, the solution procedure is iterative.

Ø For both design and performance calculations, the effectiveness-NTU method may be used without iteration.

Definitions (1/2)

• Heat exchanger effectiveness, : • Maximum possible heat rate: Ø Will the fluid characterized by Cmin or Cmax experience the largest possible temperature change in transit through the HX?

Ø Why is Cmin and not Cmax used in the definition of qmax?

Definitions (2/2)

• Number of Transfer Units, NTU

Ø A dimensionless parameter whose magnitude influences HX performance:

Heat Exchanger Relations (1/2)

q = ε Cmin (Th , i −Tc ,i ) • Performance Calculations: Ø

Cr Ø

Heat Exchanger Relations (2/2)

Design Calculations:

ε ↑ with ↓ Cr Ø Ø

• For all heat exchangers,

ε = 1 − exp (−NTU)

• For Cr

= 0, a single

or

relation applies to all HX types.

NTU = −1n (1 − ε )

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (1/5)

SCHEMATIC:

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (2/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (3/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (4/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (5/5)

and from Eq. (1) the effectiveness is

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure. (1/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure.(2/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio-pulmonary bypass procedure. (3/3)

Suggested Problems to Practice

•Example Problem: 11.1 (Page-716) to 11.8 (Page-742) •Exercise Problem: 11.1 (Page-748) to 11.94 (Page-765) •Derive equation 11.14 showing all the steps to find total heat transfer for parallel flow heat exchanger. Apply the same concept for counter- flow heat exchanger. •Derive equation 11.28a showing all the steps to find relation between heat exchanger effectiveness and NTU.

35

Homework-5

§Solve all the example problems (11.1 to 11.8) from the text book from this Chapter- 11 §Solve all the exercise problems (11.5, 11.35, 11.39, and 11.54) mentioned in the slides from this Chapter-11 §Show all the steps (Given, Find, Assumptions, Solve, hand drawings etc.) to give impression that you understood the problem §Write all the necessary equations applied to those problems

§Due by Tuesday 7/31 by 8pm §You can submit the homework early, if you want §Write your solved problems, scan all the pages as one pdf §Please use the file name for attachment as: 'HW-5-Your First and Last name' .

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Top Grade Tutor
Online Assignment Help
George M.
Engineering Exam Guru
Assignment Hut
Accounting Homework Help
Writer Writer Name Offer Chat
Top Grade Tutor

ONLINE

Top Grade Tutor

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$26 Chat With Writer
Online Assignment Help

ONLINE

Online Assignment Help

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$16 Chat With Writer
George M.

ONLINE

George M.

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$18 Chat With Writer
Engineering Exam Guru

ONLINE

Engineering Exam Guru

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$49 Chat With Writer
Assignment Hut

ONLINE

Assignment Hut

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$16 Chat With Writer
Accounting Homework Help

ONLINE

Accounting Homework Help

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$18 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Sunnow strayer - Hot dog cart income - Force mass x acceleration - Management information system case study pdf - The dawn is at hand - Are pigs color blind - David benatar second sexism - Definition for stage directions - Hitech fasteners aust pty ltd - Monsanto: A growing controversy - Using a weighted moving average with weights of - Business research methods ppt donald r cooper - Human resources data flow diagram - Contemporary arts week 1 ( - 39-41 picture point crescent noosa heads - Network installation plan template - Ideal citizen in a totalitarian government - Discussion - Urgent - 619 cal young road hallsville tx - Plumpton college bus timetable - Alan flusser net worth - End of day checklist - Matlab excel worksheet could not be activated - Explain how using edi facilitates electronic transactions in healthcare - Fluid squeezed from the clot during clot retraction - Figurative language in the road - Social work treatment plan example - Discussion 150 words - Importance of flow properties of powders in pharmacy - How to enter charges in epic - Muscular endurance is best developed by increasing - Paper - Advertising and public relations mcqs - Nucor corporation case study answers - Contribution margin per unit sold - Statistical significance vs meaningfulness - Visual aid speech outline - Systems analysis and design wiley - Monthly retirement planning worksheet answers - Insights Into Criminal Behavior - Systematic observation in psychology - New zealand post code - Uq apa 6 referencing - Penn foster writing exam - Double staggered piquet list - Clinical development plan definition - Ibn battuta the man who walked across the world - Range of tolerance graphing activity answer key - Marita's bargain analyzing the text answers 1 8 answers - Lululemon marketing case study - Example of persuasive speech monroe's motivated sequence - Pavel tsatsouline height weight - Becoming a master student 16th edition chapter 5 quiz answers - Hidden intellectualism gerald graff - Budgeting and finance - Bio magnetic ear stickers for weight loss information - What made native american peoples vulnerable to conquest by european adventurers? - Fundamentals of Nursing - Developmental groove and supplemental groove - Corptrain phoenix edu - Foundations of human development worksheet - Discussion Board Forum (Case Studies: Statesmanship) - New Works 09/14 - Shadow health chest pain answers - Case study - The chimney sweeper songs of innocence summary - Which gas would you test for with limewater - The backward pass in project network calculations determines all of the following except - Edu 555 week 5 discussion - What mechanisms produce high precipitation at temperate latitudes - Chipping sodbury tennis club - Cloudy with achance of meatballs judi barrett - Research Paper - What does reasonably practicable mean - National university msn - Critical analysis of corporate social responsibility - 4.26 lab brute force equation solver - Henry moore clinic castleford - Vcaa physics data sheet - Bus.com 4.2 - MS-13 - Ceramic oxide color chart - Additional funds needed problems and solutions - Formic acid and sodium formate equation - Whose "music of mystic serenity" captured the conservative quality of the catholic reformation? - Evergreen company sells lawn and garden products to wholesalers - MKTG201 Week 7 Assignment 7 - Sales pitch for sponsorship - Literacy and numeracy indicators - Lipase and milk experiment temperature results - Organ Leader - Psn error ce 38605 2 - Ideas in of mice and men - Scholarly activity summary example - Video reaction paper - Marketing - Principal led street fighter - Counter narrative essay examples - Churchill sexual health clinic