Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Pendulum and the calculation of g lab report

14/10/2021 Client: muhammad11 Deadline: 2 Day

EXPERIMENT 11: Pendulum And The Calculation Of G

EXPERIMENT 11: Pendulum and the Calculation of g Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate. Objective: To calculate the acceleration due to gravity by observing the motion of a pendulum. Materials: Student Provides: Support for the pendulum Weights, coins, or washers Small plastic bags Tape From LabPaq: Meter tape Stopwatch Protractor String Spring scale Discussion and Review: A pendulum is a weight hanging from or supported at a fixed point so that it swings freely under the combined forces of gravity and momentum. A typical simple pendulum consists of a heavy pendulum bob (mass = ) suspended from a light string. It is generally assumed that the mass of the string is negligible. If the bob is pulled away from the vertical with some angle, , and released so that the pendulum swings within a vertical plane the period of the pendulum is given as: Equation 1: where gLh is the length of the pendulum and ggh is the acceleration due to earth's gravity. Note that only the first three terms in the infinite series are given in Equation 1. The period is defined as the time required for the pendulum to complete one oscillation. That is, if the pendulum is released at some point, P the period is defined as the time required for the pendulum to swing along its path and return to point, P. The above formula for the period of the pendulum is greatly simplified if we limit the initial angle ƒÆ to small values. If ƒÆ is small we can approximate the period of the pendulum with a gfirst-order expressionh, which in the case of our simple pendulum is given as: Equation 2: Hands-On Labs SM-1 Lab Manual 88 Note that the period in this expression is independent of the pendulum's mass at initial angle, ƒÆ. Also, it is important to understand that the above equation is valid only for small angles and is substantially less accurate with large angles. During the cyclic swinging motion of a pendulum there is a constant yet gradual change of kinetic energy to potential energy and back to potential kinetic energy. In order to describe this phenomenon here are some terms you need to know: Amplitude: The distance the pendulum travels from the center point out to the point of maximum displacement. Frequency: The number of complete cycles per unit of time. Periodic motion: The type of motion in which the object returns to the point of origin repeatedly. Because of the rotation of the earth a pendulum will be slightly deflected on its course on every circuit. This is observable on a very long pendulum called a Faucault pendulum. Look up Faucault pendulum. Period (T): The length of time for one trip, back and forth. Displacement: The distance from the center point, straight down. Cycle: One swing of the pendulum back and forth. Bob: The mass on the end of the pendulum. PROCEDURES: Before beginning, you must first find a suitable support from which to freely hang your pendulum. Ideally there should be a wall close behind the support so you can easily affix your protractor and meter tape for recording movements. A bathroom or kitchen towel bar is ideal for this purpose. Or you might rig a support like the one at right and place it on a narrow shelf or table top. The important things are that your support allows the pendulum to hang freely; that you are able to read and record measurements from the protractor and meter tape; and that pendulum string not touch anything or be obstructed from any direction. You will also need to make a weight bag to use as the bob. Place coins, weights, or washers totaling around 25 grams inside a small plastic bag. Tie a short piece of string around the top of the bag so the weights cannot fall out Weigh your bob and record the weight. Note: one quarter should weigh around 5.7 grams. 1. Weigh your bob and record its mass. Hands-On Labs SM-1 Lab Manual 89 2. Suspend the bob from a string that measures exactly one meter (100 cm) between where it attaches to the support and where it attaches to the center of the weight bag you are using as a bob. To accomplish this, you obviously must start with string that is longer than a meter. 3. Securely affix a protractor behind where the string is attached to its support so you will be able to measure the pendulumfs amplitude in degrees. 4. Stretch a meter tape horizontally and securely affix it so that its 50-cm mark is directly behind the bob at rest. 5. Observe the protractor and pull the bob out to the 5o-mark. Then observe the meter tape and record the distance in cm of the bob displacement. 6. With a stopwatch in your other hand, release the bob and time how long it takes for the bob to move through 5 complete cycles. Record the time in Table 1. Perform two more trials from the 5o-mark. Record each time, then average the three trials and calculate the period for one cycle. 7. Repeat the procedure and record results for each of the angles shown in Table 1. DATA TABLE 1: Length of string: _____ cm = _____ m Mass of bob: _____ g = _____kg Amplitude Amp. Trial 1 - seconds Trial 2 - seconds Trial 3 - seconds Avg. Time Period Degrees cm 5 cycles 5 cycles 5 cycles 5 cycles 1 cycle 5 o 10 o 15 o 20 o 25 o 30 o 8. Place double the bob weight into a second plastic bag and repeat this procedure using a 10o.amplitude Record the data in Table 2. DATA TABLE 2: Length of string: ________ cm = _______ m Amplitude: _______o Bob Weight Trial 1 Trial 2 Trial 3 Avg. Time Period Grams 9. Put the original bob back on your pendulum. Use a 5o or 10o amplitude and make three trials each with successively shorter lengths of string, i.e., 100 cm, 75 cm, 50 cm and 25 cm. Record this data in Table 3. Hands-On Labs SM-1 Lab Manual 90 DATA TABLE 3: Mass of bob: ________ g = _______ kg Amplitude: _______o Length (m) Trial 1 Trial 2 Trial 3 Avg. Time Period .25 .50 .75 1.0 Calculations: Solve the pendulum formula for g. Substitute the data you recorded for the values for t and L (length of string) in the formula. Calculate to the correct significant figures. Then calculate your percentage error as compared to the accepted value for g. The accepted value of g is 9.8 m/s2. t = 2 ƒÎ ã(length/g) g = (2ƒÎ)2 L t2 where: g = acceleration due to gravity t = time in seconds L = length of pendulum string in meters Note: If you get very large errors in this lab you are doing something wrong. Your calculations need to be double-checked. Questions: A. How did the change in the weight of the bob affect the resulting period and frequency? B. How did the change in amplitude affect the resulting period and frequency? C. How did the change in length of the pendulum affect the period and frequency? D. What would happen if you used very large amplitudes? Check your hypothesis by trial. What amplitude did you use? What is the result? E. Hypothesize about how a magnet placed directly under the center point would affect an iron bob? Try it and find out. Did your trial verify your hypothesis? F. How close was your calculation of the value of g at your location? What might be a few sources for error in your experimental data and calculations? G. What would you expect of a pendulum at a high altitude, for example on a high mountain top? What would your pendulum do under weightless conditions?

EXPERIMENT 11: Pendulum and the Calculation of g

Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

Objective: To calculate the acceleration due to gravity by observing the motion of a

pendulum. Materials: Student Provides: Support for the pendulum Weights, coins, or washers Small plastic bags Tape From LabPaq: Meter tape Stopwatch Protractor String Spring scale

Discussion and Review: A pendulum is a weight hanging from or supported at a fixed point so that it swings freely under the combined forces of gravity and momentum. A typical simple pendulum consists of a heavy pendulum bob (mass = ) suspended from a light string. It is generally assumed that the mass of the string is negligible. If the bob is pulled away from the vertical with some angle, , and released so that the pendulum swings within a vertical plane the period of the pendulum is given as: Equation 1: where “L” is the length of the pendulum and “g” is the acceleration due to earth's gravity. Note that only the first three terms in the infinite series are given in Equation 1. The period is defined as the time required for the pendulum to complete one oscillation. That is, if the pendulum is released at some point, P the period is defined as the time required for the pendulum to swing along its path and return to point, P. The above formula for the period of the pendulum is greatly simplified if we limit the initial angle θ to small values. If θ is small we can approximate the period of the pendulum with a “first-order expression”, which in the case of our simple pendulum is given as:

Equation 2:

Hands-On Labs SM-1 Lab Manual

88

Note that the period in this expression is independent of the pendulum's mass at initial angle, θ. Also, it is important to understand that the above equation is valid only for small angles and is substantially less accurate with large angles. During the cyclic swinging motion of a pendulum there is a constant yet gradual change of kinetic energy to potential energy and back to potential kinetic energy. In order to describe this phenomenon here are some terms you need to know:

Amplitude: The distance the pendulum travels from the center point out to the point of maximum displacement. Frequency: The number of complete cycles per unit of time. Periodic motion: The type of motion in which the object returns to the point of origin repeatedly. Because of the rotation of the earth a pendulum will be slightly deflected on its course on every circuit. This is observable on a very long pendulum called a Faucault pendulum. Look up Faucault pendulum. Period (T): The length of time for one trip, back and forth. Displacement: The distance from the center point, straight down. Cycle: One swing of the pendulum back and forth. Bob: The mass on the end of the pendulum.

PROCEDURES: Before beginning, you must first find a suitable support from which to freely hang your pendulum. Ideally there should be a wall close behind the support so you can easily affix your protractor and meter tape for recording movements. A bathroom or kitchen towel bar is ideal for this purpose. Or you might rig a support like the one at right and place it on a narrow shelf or table top. The important things are that your support allows the pendulum to hang freely; that you are able to read and record measurements from the protractor and meter tape; and that pendulum string not touch anything or be obstructed from any direction.

You will also need to make a weight bag to use as the bob. Place coins, weights, or washers totaling around 25 grams inside a small plastic bag. Tie a short piece of string around the top of the bag so the weights cannot fall out Weigh your bob and record the weight. Note: one quarter should weigh around 5.7 grams. 1. Weigh your bob and record its mass.

Hands-On Labs SM-1 Lab Manual

89

2. Suspend the bob from a string that measures exactly one meter (100 cm) between where it attaches to the support and where it attaches to the center of the weight bag you are using as a bob. To accomplish this, you obviously must start with string that is longer than a meter.

3. Securely affix a protractor behind where the string is attached to its support so you

will be able to measure the pendulum’s amplitude in degrees. 4. Stretch a meter tape horizontally and securely affix it so that its 50-cm mark is

directly behind the bob at rest. 5. Observe the protractor and pull the bob out to the 5o-mark. Then observe the meter

tape and record the distance in cm of the bob displacement. 6. With a stopwatch in your other hand, release the bob and time how long it takes for

the bob to move through 5 complete cycles. Record the time in Table 1. Perform two more trials from the 5o-mark. Record each time, then average the three trials and calculate the period for one cycle.

7. Repeat the procedure and record results for each of the angles shown in Table 1. DATA TABLE 1: Length of string: _____ cm = _____ m Mass of bob: _____ g = _____kg

Amplitude Amp. Trial 1 - seconds

Trial 2 - seconds

Trial 3 - seconds

Avg. Time

Period

Degrees cm 5 cycles 5 cycles 5 cycles 5 cycles 1 cycle 5 o 10 o 15 o 20 o 25 o 30 o

8. Place double the bob weight into a second plastic bag and repeat this procedure

using a 10o.amplitude Record the data in Table 2. DATA TABLE 2: Length of string: ________ cm = _______ m Amplitude: _______o

Bob Weight Trial 1 Trial 2 Trial 3 Avg. Time Period Grams

9. Put the original bob back on your pendulum. Use a 5o or 10o amplitude and make

three trials each with successively shorter lengths of string, i.e., 100 cm, 75 cm, 50 cm and 25 cm. Record this data in Table 3.

Hands-On Labs SM-1 Lab Manual

90

DATA TABLE 3: Mass of bob: ________ g = _______ kg Amplitude: _______o Length (m) Trial 1 Trial 2 Trial 3 Avg. Time Period

.25

.50

.75 1.0

Calculations: Solve the pendulum formula for g. Substitute the data you recorded for the values for t and L (length of string) in the formula. Calculate to the correct significant figures. Then calculate your percentage error as compared to the accepted value for g. The accepted value of g is 9.8 m/s2.

t = 2 π √(length/g)

g = (2π)2 L t2

where: g = acceleration due to gravity t = time in seconds L = length of pendulum string in meters

Note: If you get very large errors in this lab you are doing something wrong. Your calculations need to be double-checked. Questions: A. How did the change in the weight of the bob affect the resulting period and

frequency? B. How did the change in amplitude affect the resulting period and frequency? C. How did the change in length of the pendulum affect the period and frequency? D. What would happen if you used very large amplitudes? Check your hypothesis by

trial. What amplitude did you use? What is the result? E. Hypothesize about how a magnet placed directly under the center point would affect

an iron bob? Try it and find out. Did your trial verify your hypothesis? F. How close was your calculation of the value of g at your location? What might be a

few sources for error in your experimental data and calculations? G. What would you expect of a pendulum at a high altitude, for example on a high

mountain top? What would your pendulum do under weightless conditions?

SM-1 Manual COLOR 105 08-17-07.pdf

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Study Master
Smart Accountants
Quality Homework Helper
Top Writing Guru
Calculation Master
Instant Assignments
Writer Writer Name Offer Chat
Study Master

ONLINE

Study Master

As per my knowledge I can assist you in writing a perfect Planning, Marketing Research, Business Pitches, Business Proposals, Business Feasibility Reports and Content within your given deadline and budget.

$16 Chat With Writer
Smart Accountants

ONLINE

Smart Accountants

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$47 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$42 Chat With Writer
Top Writing Guru

ONLINE

Top Writing Guru

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$28 Chat With Writer
Calculation Master

ONLINE

Calculation Master

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$35 Chat With Writer
Instant Assignments

ONLINE

Instant Assignments

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$41 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Tony quinn net worth - Bob's fishing hole boat rentals - Acgih industrial ventilation course - Sleep number bed assembly instructions - Discussion 5 Cryptography - Literature class discussion post about Dante's Inferno from Ch1 to Ch5 - Collaborative consultation model special education - Vocabulary - Ablemail ams 12 12 30 with solar input - Intuitive decision making meaning - Types of control feedforward concurrent feedback - Why do amides have higher boiling points than carboxylic acids - I need 1800 words on Leadership and influence , Networking , studying in the UK , Career Plan - Motivation in the classroom ppt - Endless dusk dulux exterior - Sample informative speech outline on a person - Discussion - Speed ratio of pelton wheel - Chevron placement on service charlies - Warm and cold fronts worksheet - Brownie batter belly buster trim - Arlington gas world inverell - The most common context for traditional irish dance tune and medley performances today is - Julius caesar cause of death - Strategy plans and budgets are unrelated to one another - Operating asset turnover formula - Reaction of magnesium with hydrochloric acid lab answers - Philadelphia family court custody - Discuss in detail the stakeholder approach. - Formulating Quantitative and Qualitative Research Questions - Mozart symphony no 40 movement 1 - Cirque du soleil case study pdf - Mental illnesses in one flew over the cuckoo's nest - Web analytics at quality alloys inc case summary - Medisys corp the intenscare product development team problems - Thors walden statue of jesus - Activity b continued from previous page answer key - Autocad export tool palette - The central wedge-shaped stone in an arch; the last stone put in place, it makes the arch stable. - 6 core economic principles - Example of reinforcement for sports - Discussion Study - Unintended consequences essay - Tone and mood practice passages - Moving average method of demand forecasting - Limits of accuracy meaning - Environmental Pollution Presentation - Topo 2.1 vector map - Gcu requirements - Diana kendall framing class vicarious living and conspicuous consumption pdf - Prueba de práctica leccion 5 - Limed white half dulux - Is hacking that does no direct damage a victimless crime - Louis armstrong west end blues analysis - Kc light bar australia - Balloon and straw experiment - John sutter hcc - Naeyc code of ethics scenarios - Cloud Computing and Digital Forensics - investigation of restaurant finance - Mayray govinda mantra meaning - Short amswer, finish in one hour - What is the diameter of a cd in cm - “malabar! malabar! did i say malabar, mother?” - Auditing - Tcc portsmouth admissions office - Clark ford watches prices in oman - The steel rods be and cd each have a - Saturday night fever ebert - Project charter of construction project - Chris perrin clifford chance - Cover page group assignment - Case Study - Usyd business school assignment submission - Nylex rainfall registration chart - James squire one fifty lashes dan murphy - Ansi asq z1 9 pdf - Sabas company has 20 000 shares of $100 par 2 cumulative - Bet hiphop awards seat fillers - The castle language techniques - Unit 5 Assignment (BUS411) - Azure site recovery domain controller - A virtual reality system to support software maintenance - Anz vanuatu online banking - Environmental science and human population worksheet - Break the silence francois mulder - Memory Matrix and Short Essay - Spring harvest skegness 2013 - Barbell hip thrust athlean x - Music Discussion 2 - Amp flexible lifetime usi - Assignment 14 - Stock Structure and Risk - Leader 8 - Impersonal se study spanish - Bolman and deal reframing organizations powerpoint - Intel software guard extensions bios - Morrisons distribution centre swan valley - Www ruf rice edu bioslabs tools report reportform html - Homework