Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Quasi project

30/12/2020 Client: saad24vbs Deadline: 3 days

Projects in Contemporary Organizations The past several decades have been marked by rapid growth in the use of project management as a means by which organizations achieve their objectives. In the past, most projects were external to the organization—building a new skyscraper, designing a commercial ad campaign, launching a rocket—but the growth in the use of projects lately has primarily been in the area of projects internal to organizations: developing a new product, opening a new branch, implementing a new enterprise software system, improving the services provided to customers, and achieving strategic objectives. As exhilarating as outside projects are, successfully executing internal projects is even more satisfying in that the organization has substantially improved its ability to execute more efficiently, effectively, or quickly, resulting in an agency or business that can even better contribute to society while simultaneously enhancing its own competitive strength. Fundamentally, project management provides an organization with powerful tools that improve its ability to plan, implement, and control its activities as well as the ways in which it utilizes its people and resources.


In this introductory chapter to project management, we begin by defining precisely what a project is. Both the objectives and characteristics of projects are also discussed to help further define them. Next, we address the emergence of project management, the forces that have fostered project management, and recent trends in project management. Following this, we describe the project life cycle. Finally, the chapter concludes with an overview of the structure of the remainder of the text.


THE DEFINITION OF A “PROJECT” PMBOK Guide Glossary


Formally, a project may be defined as “A temporary endeavor undertaken to create a unique product, service, or result” (PMBOK, Project Management Institute, 2013, p. 417). Consistent with this definition, there is a rich variety of projects to be found in our society. Although some may argue that the construction of the Tower of Babel or the Egyptian pyramids were some of the first “projects,” it is probable that cavemen formed a project to gather the raw material for mammoth stew. It is certainly true that the construction of Boulder Dam and Edison’s invention of the light bulb were projects by any sensible definition. Modern project management, however, is usually said to have begun with the Manhattan Project. In its early days, project management was used mainly for very large, complex research and development (R & D) projects like the development of the Atlas Intercontinental Ballistic Missile and similar military weapon systems. Massive construction programs were also organized as projects, including the construction of dams, ships, refineries, and freeways.


As the techniques of project management were developed, mostly by the military, the use of project organization began to spread. Private construction firms found that organizing work on the basis of projects or a project–based organization was helpful on smaller projects, such as the building of a warehouse or an apartment complex. Automotive companies used project organization to develop new automobile models. Both General Electric and Pratt & Whitney used project organization to develop new jet aircraft engines for airlines, as well as the Air Force. Project management has even been used to develop new models of shoes and ships. More recently, the use of project management by international organizations, and especially organizations producing services rather than products, has grown rapidly. Advertising campaigns, global mergers, and capital acquisitions are often handled as projects, and the methods have spread to the nonprofit sector. Weddings, scout-o-ramas, fund drives, election campaigns, parties, and recitals have all made use of project management. Most striking has been the widespread adoption of project management techniques for the development of computer software.


To add to our vocabulary, in discussions of project management it is sometimes useful to make a distinction between terms such as project, program, task, and work packages. The military, the source of most of these terms, generally uses the term program to refer to an exceptionally large, long-range objective that is broken down into a set of projects. These projects are divided further into tasks, which are, in turn, split into work packages that are themselves composed of work units. Of course, exceptions to this hierarchical nomenclature abound. For example, the Manhattan Project was a huge “program,” but a “task force” was created to investigate the many potential futures of a large steel company. In the broadest sense, a project is a specific, finite task to be accomplished. Whether large- or small-scale or whether long- or short-run is not particularly relevant. What is relevant is that the project be seen as a unit. There are, however, some objectives that all projects share and some attributes that characterize projects. Three Project Objectives: The “Triple Constraint” PMBOK Guide Glossary While multimillion-dollar, 5-year projects capture public attention, the overwhelming majority of all projects are comparatively small—though nonetheless important to doer and user alike. They involve outcomes, or deliverables, such as a new floor for a professional basketball arena, a new insurance policy to protect against a specific casualty loss, a new Web site, a new casing for a four- wheel-drive minivan transmission, a new industrial floor cleanser, the installation of a new method for peer review of patient care in a hospital, even the development of new software to help manage projects. The list could be extended almost without limit. These undertakings have much in common with their larger counterparts. Importantly, they have the same general objectives— specified deliverables (also commonly known as scope*), a specific deadline (time), and budget (cost). We refer to these as “direct” project objectives or goals. There is a tendency to think of a project solely in terms of its outcome—that is, its scope. But the time at which the outcome is available is itself a part of the outcome, as is the cost entailed in achieving the outcome. The completion of a building on time and on budget is quite a different outcome from the completion of the same physical structure a year late or 20 percent over budget, or both. *The term “scope” is typically used when differentiating between what is included and what is excluded in something, but in project management the term has come to mean the specified deliverables. The Project Management Institute’s Project Management Body of Knowledge (“PMBOK”) defines Scope as: “The sum of the products, services, and results to be provided as a project.” We will refer to the PMBOK guide frequently throughout this book and use the icon seen here in the margin to draw the student’s attention to this important reference (see the PMI reference in the chapter bibliography). If particular PMBOK figures, tables, sections, or chapters are relevant to the discussion, we note this under the icon as, for example, 3.2, which means Chapter 3, Section 2.


Indeed, even the concept of scope is perhaps more complex than is apparent. In particular, it is important to recognize that the expectations of the client are an inherent part of the project specifications. To consider the client’s desires as different from the project specifications is to court conflict between client and project team. All too often projects begin with the client specifying a desired outcome. Then the project team designs and implements the project. Then the client views the result of the team’s ideas. In following this approach, differences between the client’s expectations and the project team’s designs commonly develop as a project proceeds. As a result, meeting the client’s desires may not be well reflected by the initially specified scope of the project. The expectations of client and project team therefore need to be continuously realigned and integrated throughout the entire project, but they frequently are not. As a result, we believe in making an effort upfront and throughout the project to ensure the nebulous elements of the client’s evolving expectations and desires are identified and aligned with the “specified” scope stated in the project proposal.


The three direct project objectives are shown in Figure 1-1, with the specified project objectives on the axes. This illustration implies that there is some “function” that relates them, one to another— and so there is! Although the functions vary from project to project, and from time to time for a given project, we will refer to these relationships, or trade-offs, throughout this book. The two primary tasks of the project manager (the “PM”) are to manage these trade-offs and to anticipate and address risks to the project. In addition to the direct project goals, organizations often have a unique set of ancillary project objectives/goals that are often unarticulated but nevertheless important to the success of the project. Ancillary goals include improving the organization’s project management competency and methods, developing individuals’ managerial experience through project man- agement, gaining a foothold in a new market, and similar goals. In a more basic sense, those with a stake in the project (the project manager, project team, senior management, the client, and other project stakeholders) have an interest in making the project a success. Shenhar et al. (1997) have concluded that project success has four dimensions: (1) project efficiency, (2) impact on the customer, (3) the business impact on the organization, and (4) opening new opportunities for the future. The first two are clearly part of what we have defined as the project’s direct objectives; the latter two are typical of what are frequently unspecified ancillary goals. One other crucial, but unstated, trade-off that a PM must consider is the health of the project team as well as the rest of the organization. The PM cannot burn out the team in an attempt to CHAPTER1 / PROJECTSINCONTEMPORARYORGANIZATIONS achieve the direct objectives, nor destroy the organization’s functional departments in an attempt to meet the project’s goals. Another factor in making project trade-offs is the project’s environ- ment, that is, those things or persons outside the project, and often outside the sponsoring organization, that affect the project or are affected by it. Examples of this environment might be antipollution groups, trade unions, competitive firms, and the like. We will deal with these issues in more detail in Chapter 12. From the early days of project management, the direct project objectives of time, cost, and scope (as generally agreed to by the client and the organization actually doing the project) have been accepted as the primary determinants of project success or failure. In the past 25 years or so, other direct and ancillary objectives have been suggested. These did not replace the traditional time, cost, and scope, but were added as also relevant. For the most part, however, Chapters 1 through 11 will focus mainly on the traditional direct objectives.


Characteristics of Projects There are three characteristics that all projects share and a number of other characteristics that are common to projects but not universal. We begin our discussion with the three universal character- istics and then direct our attention to several of the common characteristics. The first universal characteristic of projects is that every project is unique. Though the desired end results may have been achieved elsewhere, every project has some unique elements. No two construction or R & D projects are precisely alike. Though it is clear that construction projects are usually more routine than R & D projects, some degree of customization is a characteristic of projects. In addition to the presence of risk, as noted earlier, this characteristic means that projects, by their nature, cannot be completely reduced to routine. The PM’s importance is emphasized because, as a devotee of management by exception, the PM will find there are a great many exceptions to manage by. The second universal characteristic is that a project is a one-time occurrence with a well- defined and specific set of desired end results. (We discuss poorly defined, or “quasi-” projects a bit later.) These end results are referred to as the “scope,” or sometimes required “performance,” of the project. The project can be divided into subtasks that must be accomplished in order to achieve the project goals. The project is complex enough that the subtasks require careful coordination and control in terms of timing, precedence, cost, and scope. Often, the project itself must be coordinated with other projects being carried out by the same parent organization.


The third universal characteristic of projects is that they have a finite duration. There is a clear date when the project is launched and a corresponding due date or deadline. Furthermore, like organic entities and their growth curve, projects have life cycles. Often starting with a slow beginning and progressing to a buildup of size, then peaking, beginning a decline, and finally must be terminated by some due date. (Also, like organic entities, they often resist termination.) Some projects end by being phased into the normal, ongoing operations of the parent organization. The life cycle is discussed further in Section 1.3 where an important exception to the usual description of the growth curve is mentioned. There are several different ways in which to view project life cycles. These will be discussed in more detail later.


Interdependencies


While not universally true, projects often interact with other projects being carried out simulta- neously by their parent organization. Typically, these interactions take the form of competition for scarce resources between projects, and much of Chapter 9 is devoted to dealing with these issues. While such inter-project interactions are common, projects always interact with the parent organization’s standard, ongoing operations. Although the functional departments of an


Project Management in Practice A Unique Method for Traveler-Tracking at Copenhagen Airport IT University of Copenhagen, Denmark was working with Copenhagen Airport to improve both the effi- ciency and effectiveness of the management of their airport through a new approach: traveler-tracking, but without invading people’s privacy. The 3-year project focused on a unique, low-cost approach—capturing the Bluetooth signals from passengers’ phones with two electronic readers that cost only $30 each. At the time, not everyone had a smartphone that emits sig- nals, of course, but about 7 percent of the passengers do, enough to provide a completely random sample for tracking. To ensure travelers’ privacy, a crucial stake- holder in this project, they collected only a portion of each signal and deleted the addresses. They also informed the public about the project on the airport’s website and on-site as well. To encourage positive traveler response to the project, they provided alerts to passengers willing to synchronize their Bluetooth to receive information regarding when their plane was boarding and a map to the gate. Knowing when people were entering and leaving Security allowed the airport to balance the staff at Security so lines didn’t build up, thereby shortening the time passengers must wait, while also reducing over- and under-staffing of screeners. In addition, the information allows them to also post wait times at the check-in gates. The data also lets the airport determine which shops and areas are getting the most traffic so they can shift usage of facility space to better serve the travelers and the friends and families accompanying them. And when construction and rerouting changes traffic flows, they can determine the impact on pas- sengers and take action to reduce the inconvenience.


Questions: 1. Arethetripleconstraintsofthisprojectclear?What are they?


2. What was unique about this project? What was the main conflict?


3. Why are the travelers themselves a stakeholder in this project, since most of them won’t even know they are being tracked?


4. How widespread do you think this technology will become? What uses will be garnered from it? Do any of them concern you? Source: S. F. Gale, “Data on the Go,” PM Network, Vol. 24.


organization (marketing, finance, manufacturing, and the like) interact with one another in regular, patterned ways, the patterns of interaction between projects and these departments tend to be changeable. Marketing may be involved at the beginning and end of a project, but not in the middle. Manufacturing may have major involvement throughout. Finance is often involved at the beginning and accounting (the controller) at the end, as well as at periodic reporting times. The PM must keep all these interactions clear and maintain the appropriate interrelationships with all external groups. Projects also typically have limited budgets, both for personnel as well as other resources. Often the budget is implied rather than detailed, particularly concerning personnel, but it is strictly limited. The attempt to obtain additional resources (or any resources) frequently leads to the next attribute—conflict. More than most managers, the PM lives in a world characterized by conflict. Projects com- pete with functional departments for resources and personnel. More serious, with the growing proliferation of projects, is the project-versus-project conflict for resources within multiproject organizations. The members of the project team are in almost constant conflict for the project’s resources and for leadership roles in solving project problems. The PM must be expert in conflict resolution, but we will see later that there are helpful types of conflict. The PM must recognize the difference.


Project Management in Practice The Smart-Grid Revolution Starts in Boulder, Colorado  ermingut/iStockphoto Boulder’s utility company, Xcel Energy, decided that it was time to create a roadmap for a 3-year, $100 mil- lion “smart-grid” electrical system that would span the entire city. There were no standards, benchmarks, or tested procedures for converting a city from a con- ventional electric-grid system to a fully integrated smart one, though it was known that if customers can monitor the true cost of their energy, they will automatically reduce their usage, by up to 30 percent in some cases. Of course, the smart grid would also allow Xcel to reroute power around bottlenecked lines, detect power outages, identify service risks, cut its use of road crews, read customer meters remotely, reduce outages, and identify false alarms more quickly. Xcel brought in a mass of partners on the project, such as Accenture consulting for engineering, energy industry consultants, leading technologists, business leaders, IT experts, and of course, Boulder city man- agers, leaders, and user-citizens. The public and pri- vate partners were divided into eight teams, all led by a senior project manager working with a Project Man- agement Office. With all these different stakeholders, with different objectives and interests, it was crucial to have steady, reliable communication to keep everyone up to date and the project on track. Security and privacy were high-priority items on the project, and communication with the community was facilitated through town hall meetings, the local media, tours of project sites, and even a touring trailer allowing citi- zens to get a hands-on demonstration of the smart-grid technology. With the completion of the project, Xcel is now measuring its many benefits and expects it will take a year to collect and analyze all the data across all the seasons. The project partners have also created an industry consortium to establish industry standards for future, larger smart-grid projects. They now see Boulder as a living laboratory from which they can continue to learn and thereby successfully deploy smart grids across the entire country.


Boulder’s utility company, Xcel Energy, decided that it was time to create a roadmap for a 3-year, $100 mil- lion “smart-grid” electrical system that would span the entire city. There were no standards, benchmarks, or tested procedures for converting a city from a con- ventional electric-grid system to a fully integrated smart one, though it was known that if customers can monitor the true cost of their energy, they will automatically reduce their usage, by up to 30 percent in some cases. Of course, the smart grid would also allow Xcel to reroute power around bottlenecked lines, detect power outages, identify service risks, cut its use of road crews, read customer meters remotely, reduce outages, and identify false alarms more quickly. Xcel brought in a mass of partners on the project, such as Accenture consulting for engineering, energy industry consultants, leading technologists, business


Questions: 1. Are the triple constraints of this project clear? List each of them. 2. Given the range of benefits listed for the new technology, what interdependencies and conflicts do you suspect smart grids will create for utilities? 3. A major portion of this project had to do with carefully managing all the stakeholders. List those mentioned in the article and divide them into the four groups mentioned above. Do any stakeholders fall into more than one of the groups? 4. What conflicts do you suspect might have occurred between all the different stakeholders in this project? 5. Why do you imagine Xcel agreed to invest $100 million in this risky experiment? What might have been their ancillary goals?


1.1 THE DEFINITION OF A “PROJECT”


Conventional thinking suggests different stakeholders (e.g., clients, the parent organization, the project team, and the public) define success and failure in different ways. For example, the client wants changes and the parent organization wants profits. Likewise, the individuals working on projects are often responsible to two bosses at the same time: a functional manager and the project manager. Under such conditions conflict can arise when the two bosses have different priorities and objectives. While the conventional view tends to regard conflict as a rather ubiquitous part of working on projects, more recently others have challenged this view. For example, John Mackey, cofounder and co-CEO of Whole Foods Market, suggests in his recent book Conscious Capitalism (2013) that satisfying stakeholder needs is not a zero-sum game where satisfying one stakeholder must come at the expense of another. Rather, Mackey suggests a better approach is to identify opportunities to satisfy all stakeholder needs simultaneously. One way to accomplish this is to identify ways to align the goals of all stakeholders with the purpose of the project. As was mentioned earlier, the primary role of the project manager is to manage the tradeoffs. However, as Mackey warns, if we look for tradeoffs we will always find tradeoffs. On the other hand, if we look for synergies across the stakeholder base, we can often find them too. The clear lesson for project managers is to not be too quick to assume tradeoffs exist among competing project objectives and stakeholder groups.


Nonprojects and Quasi-Projects


If the characteristics listed above define a project, it is appropriate to ask if there are nonprojects. There are. The use of a manufacturing line to produce a flow of standard products is a nonproject. The production of weekly employment reports, the preparation of school lunches, the delivery of mail, the flight of Delta 1288 from Dallas to Dulles, checking your e-mail, all are nonprojects. While one might argue that each of these activities is, to some degree, unique, it is not their uniqueness that characterizes them. They are all routine. They are tasks that are performed over and over again. This is not true of projects. Each project is a one-time event. Even the construction of a section of interstate highway is a project. No two miles are alike and constructing them demands constant adaptation to the differences in terrain and substructure of the earth on which the roadbed is to be laid. Projects cannot be managed adequately by the managerial routines used for routine work.


In addition to projects and nonprojects, there are also quasi-projects: “Bill, would you look into this?” “Mia, we need to finish this by Friday’s meeting.” “Samir, can you find out about this before we meet with the customer?” Most people would consider that they have just been assigned a project, depending on who “we” and “you” is supposed to include. Yet there may be no specific task identified, no specific budget given, and no specific deadline defined. Are they still projects, and if so, can project management methods be used to manage them? Certainly! The scope, schedule, and budget have been implied rather than carefully delineated by the words “this,” “meet,” and “we” (meaning “you”) or “you” (which may mean a group or team). In such cases, it is best to try to quickly nail down the scope, schedule, and budget as precisely as possible, but without antagoniz- ing the manager who assigned the project. You may need to ask for additional help or other resources if the work is needed soon—is it needed soon? How accurate/thorough/detailed does it need to be? And other such questions. One common quasi-project in the information systems area is where the project includes discovery of the scope or requirements of the task itself (and possibly also the budget and deadline). How can you plan a project when you don’t know the scope requirements? In this case, the project is, in fact, determining the scope requirements (and possibly the budget and deadline also). If the entire set of work (including the discovery) has been assigned to you as a project, then the best approach is to set this determination as the first “milestone” in the project, at which point the resources, budget, deadline, capabilities, personnel, and any other matters will be reviewed to determine if they are sufficient to the new project requirements. Alternatively, the customer may be willing to pay for the project on a “cost-plus” basis, and call a halt to the effort when the benefits no longer justify the cost.


Project Management in Practice The Olympic Torch Relay Project Getting the Olympic Flame, known as the Olympic Torch Relay, to the Olympic Games is no simple matter. Generally, the Torch Relay has gotten longer and more complex with every Olympic event. In the 1936 Olympics the torch left from the original site of the Olympics, the Temple of Hera in Olympia, Greece, and traveled through seven countries to reach its final destination at the games in Berlin. For the Beijing 2008 Olympics, the flame traveled 137,000 kilometers (about 85,000 miles)! This increasing length and complexity are driven by the realization of host country citizens that it is a rare opportunity to have the Olympic torch pass through your home- town and the corresponding goal of the Olympic Committee to touch as many lives as possible in a positive way.


As an example, the planning for the 1996 Atlanta Olympic Torch Relay (see figure) took two years, cost over $20 million, and involved an 84 day, 42 state campaign using 10,000 runners to carry the torch for 15,000 miles! Accompanying the runners was a 40-vehicle caravan carrying security officers, media personnel, medical personnel, computers, tel- ecommunications gear, clothing, food, and spare lanterns with extra flames in case the original torch went out. The caravan included: 50 cell phones; 120 radios; 30 cars; 10 motorcycles; and clothing for 10,000 runners, 10,000 volunteers, as well as 2,500 escort runners. The torch relay is also a major marketing campaign, primarily for the relay’s sponsors. Thus, accompany- ing the Atlanta-bound caravan were trucks hawking Olympic memorabilia: t-shirts, sweatshirts, baseball caps, tickets to the soccer matches, and on and on. In addition to retail commercialism, a number of Seatt companies were piggybacking on the torch relay to further their own commercial interests: IBM, Motor- ola, BellSouth, Texaco, BMW, Lee, Coca-Cola, and so on. The next games will be held in Rio de Janeiro in 2016—we can only wonder how far and how complex the Torch Relay will be then! Questions: 1. Which of the three universal and three common characteristics of projects are displayed in the regular torch relay?


2. Since this is such a regular project—every 4 years since 1936—would you consider it a nonproject, or a quasi-project? Why, or why not?


3. Is the torch relay another part of the Olympics themselves, perhaps a subproject?


WHY PROJECT MANAGEMENT?


It is popular to ask, “Why can’t they run government the way I run my business?” In the case of project management, however, business and other organizations learned from government, not the other way around. A lion’s share of the credit for the development of the techniques and practices of project management belongs to the military, which faced a series of major tasks that simply were not achievable by traditional organizations operating in traditional ways. NASA’s Apollo space program, and more recently, Boston’s “Big Dig” tunnel and freeways project and the development of Boeing’s 787 “Dreamliner” are a few of the many instances of the application of these specially developed management approaches to extraordinarily complex projects. Follow- ing such examples, nonmilitary government sectors, private industry, public service agencies, and volunteer organizations have all used project management to increase their effectiveness. For example, most firms in the computer software business routinely develop their output as projects or groups of projects.


Project management has emerged because the characteristics of our contemporary society demand the development of new methods of management. Of the many forces involved, three are paramount: (1) the exponential expansion of human knowledge; (2) the growing demand for a broad range of complex, sophisticated, customized goods and services; and (3) the evolution of worldwide competitive markets for the production and consumption of goods and services. All three forces combine to mandate the use of teams to solve problems that used to be solvable by individuals. These three forces combine to increase greatly the complexity of goods and services produced plus the complexity of the processes used to produce them. This, in turn, leads to the need for more sophisticated systems to control both outcomes and processes.


The basic purpose for initiating a project is to accomplish specific goals. The reason for organizing the task as a project is to focus the responsibility and authority for the attainment of the goals on an individual or small group. In spite of the fact that the PM often lacks authority at a level consistent with his or her responsibility, the manager is expected to coordinate and integrate all activities needed to reach the project’s goals. In particular, the project form of organization allows the manager to be responsive to: (1) the client and the environment, (2) identify and correct problems at an early date, (3) make timely decisions about trade-offs between conflicting project goals, and (4) ensure that managers of the separate tasks that comprise the project do not optimize the performance of their individual tasks at the expense of the total project—that is, that they do not suboptimize.


Actual experience with project management (such as through the currently popular Six- Sigma projects) indicates that the majority of organizations using it experience better control and better customer relations and apparently an increase in their project’s return on investment (Ibbs et al., 1997). A significant proportion of users also report shorter development times, lower costs, higher quality and reliability, and higher profit margins. Other reported advantages include a sharper orientation toward results, better interdepartmental coordination, and higher worker morale.


On the negative side, most organizations report that project management results in greater organizational complexity. Many also report that project organization increases the likelihood that organizational policy will be violated—not a surprising outcome, considering the degree of autonomy required for the PM. A few firms reported higher costs, more management difficulties, and low personnel utilization. As we will see in Chapter 5, the disadvantages of project management stem from exactly the same sources as its advantages. The disadvantages seem to be the price one pays for the advantages. On the whole, the balance weighs in favor of project organization if the work to be done is appropriate for a project.


The tremendous diversity of uses to which project management can be put has had an interesting, and generally unfortunate, side-effect. While we assert that all projects are to some extent unique, there is an almost universal tendency for those working on some specific types of projects to argue, “Software (or construction, or R & D, or marketing, or machine maintenance, or . . . ) projects are different and you can’t expect us to schedule (or budget, or organize, or manage, or . . . ) in the same way that other kinds of projects do.” Disagreement with such pleas for special treatment is central to the philosophy of this book. The fundamental similarities between the processes involved in managing all sorts of projects, be they long or short, product- or service-oriented, parts of all-encompassing programs or stand-alone, are far more pervasive than are their differences.


There are also real limitations on project management. For example, the mere creation of a project may be an admission that the parent organization and its managers cannot accomplish the desired outcomes through the functional organization. Further, conflict seems to be a necessary side-effect. As we noted, the PM often lacks the authority-of-position that is consistent with the assigned level of responsibility. Therefore, the PM must depend on the goodwill of managers in the parent organization for some of the necessary resources. Of course, if the goodwill is not forthcoming, the PM may ask senior officials in the parent organization for their assistance. But to use such power often reflects poorly on the skills of the PM and, while it may get cooperation in the instance at hand, it may backfire in the long run.


We return to the subject of the advantages, disadvantages, and limitations of the project form of organization later. For the moment, it is sufficient to point out that project management is difficult even when everything goes well. When things go badly, PMs have been known to turn gray overnight and take to hard drink! The trouble is that project organization is the only feasible way to accomplish certain goals. It is literally not possible to design and build a major weapon system, for example, in a timely and economically acceptable manner, except by project organization. The stronger the emphasis on achievement of results in an organization, the more likely it will be to adopt some form of project management. The stake or risks in using project management may be high, but no more so than in any other form of management. And for projects, it is less so. Tough as it may be, it is all we have—and it works!


All in all, the life of a PM is exciting, rewarding, at times frustrating, and tends to be at the center of things in most organizations. Project management is now being recognized as a “career path” in a growing number of firms, particularly those conducting projects with lives extending more than a year or two. In such organizations, PMs may have to function for several years, and it is important to provide promotion potential for them. It is also common for large firms to put their more promising young managers through a “tour of duty” during which they manage one or more projects (or parts of projects). This serves as a good test of the aspiring manager’s ability to coordinate and manage complex tasks and to achieve results in a politically challenging environ- ment where negotiation skills are required.


Forces Fostering Project Management


First, the expansion of knowledge allows an increasing number of academic disciplines to be used in solving problems associated with the development, production, and distribution of goods and services. Second, satisfying the continuing demand for more complex and customized products and services depends on our ability to make product design an integrated and inherent part of our production and distribution systems. Third, worldwide markets force us to include cultural and environmental differences in our managerial decisions about what, where, when, and how to produce and distribute output. The requisite knowledge does not reside in any one individual, no matter how well educated or knowledgeable. Thus, under these conditions, teams are used for making decisions and taking action. This calls for a high level of coordination and cooperation between groups of people not particularly used to such interaction. Largely geared to the mass production of simpler goods, traditional organizational structures and management systems are simply not adequate to the task. Project management is.


The organizational response to the forces noted above cannot take the form of an instantaneous transformation from the old to the new. To be successful, the transition must be systematic, but it tends to be slow and tortuous for most enterprises. Accomplishing organizational change is a natural application of project management, and many firms have set up projects to implement their goals for strategic and tactical change.


Another important societal force is the intense competition among institutions, both profit and not-for-profit, fostered by our economic system resulting in organizational “crusades” such as “total quality management,” “supply chain management,” and particularly prominent these days: “Six-Sigma.”* The competition that all of these crusades engenders puts extreme pressure on organizations to make their complex, customized outputs available as quickly as possible. “Time-to-market” is critical. Responses must come faster, decisions must be made sooner, and results must occur more quickly. Imagine the communications problems alone. Information and knowledge are growing explosively, but the time permissible to locate and use the appropriate knowledge is decreasing.


In addition, these forces operate in a society that assumes that technology can do anything. The fact is, this assumption is reasonably true, within the bounds of nature’s fundamental laws. The problem lies not in this assumption so much as in a concomitant assumption that allows society to ignore both the economic and noneconomic costs associated with technological progress until some dramatic event focuses our attention on the costs (e.g., the global financial crisis, the Gulf oil spill). At times, our faith in technology is disturbed by difficulties and threats arising from its careless implementation, as in the case of industrial waste, but on the whole we seem remarkably tolerant of technological change, such as the overwhelmingly easy acceptance of communication by e-mail and shopping on the Internet.


Finally, the projects we undertake are large and getting larger. The modern advertising company, for example, advances from blanket print ads to regionally focused television ads to personally focused Internet ads. As each new capability extends our grasp, it serves as the base for new demands that force us to extend our reach even farther. Projects increase in size and complexity because the more we can do, the more we try to do.


The projects that command the most public attention tend to be large, complex, multi- disciplinary endeavors. Often, such endeavors are both similar to and different from previous projects with which we may be more or less familiar. Similarities with the past provide a base from which to start, but the differences imbue every project with considerable risk. The complexities and multidisciplinary aspects of projects require that many parts be put together so that the project’s objectives—deliverables, time (or schedule), and cost—are met.


Recent Changes in Managing Organizations


In the two decades since the first edition of this book was published, the process of managing organizations has been impacted by three revolutionary changes. First, we have seen an accelerating replacement of traditional, hierarchical management by consensual management. Second, we are currently witnessing the adoption of the “systems approach” to deal with organizational or technological problems because it is abundantly clear that when we act on one part of an organization or system, we are certain to affect other parts. Third, we have seen organizations establishing projects as the preferred way to accomplish their goals. Examples vary from the hundreds of projects required to accomplish the “globalization” of a multibillion dollar household products firm to the incremental tailoring of products and services for individual customers. We elaborate on this tie between the organization’s goals and the projects it selects for implementation in the following chapter. And as we will note in Chapter 5 and elsewhere, there has been a rapid and sustained growth in the number of organizations that use projects to accomplish almost all of the nonroutine tasks they undertake. While all three of these phenomena have been known for many years, it is comparatively recent that they have been widely recognized and practiced.


In his fascinating book, Rescuing Prometheus (Hughes, 1998), technology historian Thomas Hughes examines four large-scale projects that required the use of a nontraditional management style, a nontraditional organizational design, and a nontraditional approach to problem solving in order to achieve their objectives. These huge projects—the Semiautomatic Ground Environment (SAGE) air defense system, the Atlas Intercontinental Ballistic Missile, the Boston Central Artery/ Tunnel (better known as “the big dig”), and the Department of Defense Advanced Research Projects Agency’s Internet (ARPANET)—are all characterized by extraordinarily diverse knowledge and information input requirements.* The size and technological complexity of these projects required input from a large number of autonomous organizations—governmental, industrial, and academic—that usually did not work cooperatively with other organizations, were sometimes competitors, and could be philosophical and/or political opponents. Further, any actions taken to deal with parts of the total project often had disturbing impacts on many other parts of the system.


Obviously, these projects were not the first complex, large-scale projects carried out in this country or elsewhere. For example, the Manhattan Project—devoted to the development of the atomic bomb— was such a project. The Manhattan Project, however, was the sole and full-time work for a large majority of the individuals and organizations working on it. The organizations contributing to the projects Hughes describes were, for the most part, working on many other tasks. For example, Massachusetts Institute of Technology (MIT), the Pentagon, IBM, Bell Labs (now Lucent Technologies), RAND Corporation, the Massachusetts Department of Highways, and a great many other organizations were all highly involved in one or more of these projects while still carrying on their usual work. The use of multiple organizations (both within and outside of the sponsoring firm) as contributors to a project is no longer remarkable. Transdisciplinary projects are more the rule than the exception.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

University Coursework Help
Helping Hand
Homework Tutor
Quick Mentor
Smart Accountants
Writer Writer Name Offer Chat
University Coursework Help

ONLINE

University Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$102 Chat With Writer
Helping Hand

ONLINE

Helping Hand

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$100 Chat With Writer
Homework Tutor

ONLINE

Homework Tutor

Hello, I will provide with valuable, informative content that you will appreciate. The content will surely hit your target audience. I will provide you with the work that will be according to the needs of the targeted audience and Google’s requirement.

$80 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

Hey, I have gone through your job posting and become very much interested in working with you.I can deliver professional content as per your requirements. I am a multi-skilled person with sound proficiency in the English language for being a native writer who worked on several similar projects of content writing and can deliver quality content to tight deadlines. I am available for both online and offline writing jobs with the promise of offering an incredibly responsive and supreme level of customer service. Thanks!

$95 Chat With Writer
Smart Accountants

ONLINE

Smart Accountants

I feel, I am the best option for you to fulfill this project with 100% perfection. I am working in this industry since 2014 and I have served more than 1200 clients with a full amount of satisfaction.

$95 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Minimum time an nhs fire door will contain fire - Tony's art works graph i to iv - NUR340asignmentweek6 - American red cross financial statements 2014 - Introduction to java programming and data structures comprehensive version pdf - Process cost summary - Nutrient density calculation - Fluid overload - Diversity Issues in Criminal Justice – The Gay Community and Criminal Justice System - Chapter 8 - Stryker power load system - Sample dissertation proposal in education - What does kincaid compare and contrast in this essay - Poe trial of ascendancy locked door - Db dental kings square - Quel quelle quels quelles worksheets - Are piezogenic pedal papules dangerous - Dr pratap shetty wollongong - Car rental system project source code in c++ - Chiang and wainwright mathematical economics - Excel document edit - Hydropower advantages and disadvantages - George frisbie hoar on the chinese exclusion act answers - American optical corporation provides a variety of share based - Cultural competency staircase model - Deutsche bank case study answers - Advantages and disadvantages of interoperability in health information systems - Victor harbor aquatic center - Na+ and o2 formula - Guests of the sheik chapter summary - ¿qué dio origen al "lenguaje chat"? - Harley davidson entry strategies for global expansion - Assignment - Ksh commands cheat sheet - Need presentation based on uploaded document - Lpkf pcb milling machine - Cardinal winning secondary school - Get the point wabbit e 69 answers - 70-72 wests road maribyrnong - Standardised mini mental state examination guidelines - Spirit soul and body watchman nee pdf - Viticulture and oenology courses - Contour belt replacement gel pads - Shaw farm pub essex - Austin hospital mri department - Hcs 475 problem analysis worksheet - Southernization by lynda shaffer answers - Out of period liability search - Direct burial electrical wire - Apply moderate effect smartart style powerpoint - Peak by roland smith - Assign 1 - BUS 633 WEEK 3 FINAL PROJECT - Ucl arts and sciences - Stat transfer 14 license key - Usyd my exam timetable - Mustang case study - Basic computer terms worksheet - CMIT 370 Week 1 discussion. - The gambler the nun and the radio sparknotes - Describe domino's business model and business strategy - Hrm incident 1 i feel great - Atkins or fadkins by karen e bledsoe answer key - Honeywell smoke detector price - Week 6 - What assumption did the new york times “ethicist" contest call into question? - Camberwell girls grammar bullying - 13 roles of human service professionals - Tafe sa campus map - Access module 3 maintaining a database - Considering your answer to questions 3 and 4 - Vce physical education units 1 and 2 - Raised trot pole distances - How to make a bubble sort in visual basic - Brisbane city council cabbage tree creek - Why is america self segregating - Hair color levels 1-10 chart bleach - SOCW 6361 - Requires symbolic math toolbox - Organizational Policies and Practices to Support Healthcare Issues - Best music university in melbourne - So energy ghana ltd - UML diagram - Running a thousand miles for freedom discussion questions - Which spell causes objects to swell in size - Write self concept paper - Types of ac voltmeter - CHRISTIAN SERVANT LEADERS - Use zero through third order taylor series - Ta hb 0007 1 - What is the number of valence electrons in argon - Frequency response of op amp theory - Tafe pre apprenticeship courses nsw - DQ2 - Convert google slides to google doc - Discussion w1 650 - Who invented freeze drying - The blue stones by isak dinesen pdf - Assignment 1 professional email message - 200 words - In the backyard song