Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Radioactive dating game answer key

26/03/2021 Client: saad24vbs Deadline: 2 Day

EDS 1021 Week 6 Interactive Assignment

Radiometric Dating

Objective: Using a simulated practical application, explore the concepts of radioactive decay and the half-life of

radioactive elements, and then apply the concept of radiometric dating to estimate the age of various objects.

Background: Review the topics Half-Life, Radiometric Dating, and Decay Chains in Chapter 12 of The Sciences.

Instructions:

1. PRINT a hard copy of this entire document, so that the experiment instructions may be easily referred to,

and the data tables and questions (on the last three pages) can be completed as a rough draft.

2. Download the Radiometric Dating Game Answer Sheet from the course website. Transfer your data

values and question answers from the completed rough draft to the answer sheet. Be sure to put your

NAME on the answer sheet where indicated. Save your completed answer sheet on your computer.

3. SUBMIT ONLY the completed answer sheet, by uploading your file to the digital drop box for the

assignment.

Introduction to the Simulation

1. After reviewing the background information for this assignment, go to the website for the interactive

simulation “Radioactive Dating Game” at http://phet.colorado.edu/en/simulation/radioactive-dating-game.

Click on DOWNLOAD to run the simulation locally on your computer.

2. Software Requirements: You must have the latest version of Java software (free) loaded on your computer

to run the simulation. If you do not or are not sure if you have the latest version, go to

http://www.java.com/en/download/index.jsp .

3. Explore and experiment on the 4 different “tabs” (areas) of the simulation. While playing around, think about

how the concepts of radioactive decay are being illustrated in the simulation.

Half Life Tab – observe a sample of radioactive atoms decaying - Carbon-14, Uranium-238, or ? (a custom-

made radioactive atom). Clicking on the “add 10” button adds 10 atoms at a time to the “decay area”. There

are a total of 100 atoms in the bucket, so clicking the “add 10” button 10 times will empty the bucket into the

decay area. Observe the pie chart and time graph as atoms decay. You can PAUSE, STEP (buttons at the

bottom of the screen) the simulation in time as atoms are decaying, and RESET the simulation.

Decay Rates Tab – Similar to the half-life tab, but different! Atom choices are carbon-14 and uranium-238.

The bucket has a total of 1000 atoms. Drag the slide bar on the bucket to the right to increase the number

of atoms added to the decay area. Observe the pie chart and time graph as atoms decay. Note that the

graph for the Decay Rates tab provides different information than the graph for the Half Life tab. You can

PAUSE, STEP (buttons at the bottom of the screen) the simulation in time as atoms are decaying, and

RESET the simulation.

Measurement Tab – Use a probe to virtually measure radioactive decay within an object - a tree or a

volcanic rock. The probe can be set to detect either the decay of carbon-14 atoms, or the decay of uranium-

238 atoms. Follow prompts on the screen to run a simulation of a tree growing and dying, or of a volcano

erupting and creating a rock, and then measuring the decay of atoms within each object.

Dating Game Tab – Use a probe to virtually measure the percentage of radioactive atoms remaining within

various objects and, knowing the half-life of radioactive elements being detected, estimate the ages of

objects. The probe can be set to either detect carbon-14, uranium-238, or other “mystery” elements, as

appropriate for determining the age of the object. Drag the probe over an object, select which element to

measure, and then slide the arrow on the graph to match the percentage of atoms measured by the probe.

The time (t) shown for the matching percentage can then be entered as the estimate in years of the object’s

age.

After playing around with the simulation, conduct the following four (4) short experiments. As you conduct

the experiments and collect data, fill in the data tables and answer the questions on the last three pages of

this document.

http://phet.colorado.edu/en/simulation/radioactive-dating-game
http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
Experiment 1: Half Life

1. Click on the Half Life tab at the top of the simulation screen.

2. Procedure:

Part I - Carbon-14

a. Click the blue “Pause” button at the bottom of the screen (i.e., set it so that it shows the “play” arrow). Click the “Add 10” button below the “Bucket o’ Atoms” repeatedly, until there are no more atoms left in the bucket. There are now 100 carbon-14 atoms in the decay area.

b. The half-life of carbon-14 is about 5700 years. Based on the definition of half-life, if you left these 100 carbon-14 atoms to sit around for 5700 years, what is your prediction of how many carbon-14 atoms will decay into the stable element nitrogen-14 during that time? Write your prediction in the “prediction” column for the row labeled “carbon-14”, in data table 1.

c. Click the blue “Play” arrow at the bottom of the screen. As the simulation runs, carefully observe what is happening to the carbon-14 atoms in the decay area, and the graphs at the top of the screen (both the pie chart and the time graph). Once all atoms have decayed into the stable isotope nitrogen-14, click the blue “Pause” button at the bottom of the screen (i.e., set it so that it shows the “play” arrow), and “Reset All Nuclei” button in the decay area.

d. Repeat step c. until you have a good idea of what is going on in this simulation. e. Repeat step c. again, but this time, watch the graph at the top of the window carefully, and click

“pause” when TIME reaches 5700 years (when the carbon-14 atom moving across the graph reaches

the red dashed line labeled HALF LIFE on the TIME graph). f. If you do NOT pause the simulation on or very close to the red dashed line, click the “Reset All Nuclei”

button and repeat step e. g. Once you have paused the simulation in the correct spot, look at the pie graph and determine the

number of nuclei that have decayed into nitrogen-14 at Time = HALF LIFE. Write this number in data table 1, in the row labeled “carbon-14”, under “trial 1”.

h. Click the “Reset All Nuclei” button in the decay area. i. Repeat steps e through h for two more trials. For each trial, write down in data table 1, the number of

nuclei that have decayed into nitrogen-14 at Time = HALF LIFE, in the row labeled “carbon-14”, under “trial 2” and “trial 3” respectively.

Part II – Uranium-238

a. Click “reset all” on the right side of the screen in the Decay Isotope box, and click “yes” in the box that pops up. Click on the radio button for uranium-238 in the Decay Isotope box. Click the blue “Pause”

button at the bottom of the screen (i.e., set it so that it shows the “play” arrow). Click the “Add 10” button below the “Bucket o’ Atoms” repeatedly, until there are no more atoms left in the bucket. There are now 100 uranium-238 atoms in the decay area.

b. The half-life of uranium-238 is 4.5 billion years!* Based on the definition of half-life, if you left these 100 uranium-238 atoms to sit around for 4.5 billion years, what is your prediction of how many uranium atoms will decay into lead-206 during that time? Write your prediction in the “prediction” column for the second row, labeled “uranium-238”, in data table 1.

c. Click the “Play” button at the bottom of the window. Watch the graph at the top of the window carefully, and click “pause” when the time reaches 4.5 billion years (when the uranium-238 atom

moving across the graph reaches the red dashed line labeled HALF LIFE on the time graph). d. If you don’t pause the simulation on or very close to the red line, click the “Reset All Nuclei” button and

repeat step c. e. Once you have paused the simulation in the correct spot, look at the pie graph and determine the

number of nuclei that have decayed into lead-206 at Time = HALF LIFE. Write this number in data table 1, in the row labeled “uranium-238”, under “trial 1”.

f. Click the “Reset All Nuclei” button in the decay area. g. Repeat steps c through e for two more trials. For each trial, write down in data table 1, the number of

nuclei that have decayed into lead-206 at Time = HALF LIFE, in the row labeled “uranium-238”, under “trial 2” and “trial 3” respectively.

3. Calculate the average number of atoms that decayed for all three trials of carbon-14 decay. Do the same for

all three trials uranium-238 decay. Write the average values for each element under “averages”, the last

column in data table 1.

4. Answer the five (5) questions for Experiment 1 on the Questions page. * Unlike Carbon-14, which undergoes only one radioactive decay to reach the stable nitrogen-14, uranium-238 undergoes MANY decays into many intermediate unstable elements before

finally getting to the stable element lead-206 (see the decay chain for uranium-238 in chapter 12 for details).

Experiment 2: Decay Rates

1. Set Up: Click on the Decay Rates tab at the top of the simulation screen.

2. Procedure

Part I – Carbon-14

a. In the Choose Isotope area on the right side of the screen, click the button next to carbon-14. Recall

that carbon-14 has a half-life of about 5700 years. b. Drag the slide bar on the bucket of atoms all the way to the right. This will put 1,000 radioactive atoms

into the decay area. When you let go of the slide bar, the simulation will start right away. If you missed seeing the simulation run from the start, start it over again by clicking “Reset All Nuclei”, and keep your eyes on the screen. Watch the graph at the bottom of the screen as you allow the simulation to run until all atoms have decayed.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Homework Tutor
Top Essay Tutor
Best Coursework Help
Assignment Helper
24/7 Assignment Help
Engineering Help
Writer Writer Name Offer Chat
Homework Tutor

ONLINE

Homework Tutor

I have read your project details. I can do this within your deadline.

$19 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$122 Chat With Writer
Best Coursework Help

ONLINE

Best Coursework Help

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$44 Chat With Writer
Assignment Helper

ONLINE

Assignment Helper

I will cover all the points which you have mentioned in your project details.

$37 Chat With Writer
24/7 Assignment Help

ONLINE

24/7 Assignment Help

I have read your project details. I can do this within your deadline.

$105 Chat With Writer
Engineering Help

ONLINE

Engineering Help

I will cover all the points which you have mentioned in your project details.

$127 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Jack n jill toothpaste priceline - John connelly crown cork and seal - Practical English exam 700138 from Penn Foster - Indiana university plagiarism test certificate answers - Erich goode deviant behavior 10th edition pdf - Rookwood v for vendetta - MKTG201 Week 2 Quiz SCORE 100 PERCENT - Intel server board s1200spl - Implementation plan. - Third person past tense - Macquarie group capital notes 5 - Support community participation and social inclusion - Cynthia jesus died for our sin thias - The historical american fire problem and the current trends - Management - Sonic effect in poetry - Who can complete this by 10 tonight - Umuc webtext - Segmentation solutions nielsen zip code - Comp4920 company case study - Super replicator - Paper chromatography of ink dyes lab report - How to make a standard solution - Cost comparison of flexible and rigid pavement - How do you write 12 noon am or pm - Saltwater crocodile behavioural adaptations - Hudspeth county sheriff arvin west - Kingsford smith drive upgrade plans - Financing s&s air's expansion plans with a bond issue - Recycled plastic tiles machine - Lincoln hall university of nottingham - Godfather baptism scene church - Parasitic load test car - Rhetorical analysis of a song - 2 cm diameter pvc pipe - Ypte org uk rainforest - Extended matching questions anatomy - I need 1500 words on International Business in India - Ib biology cellular respiration exam questions - Asus com service description - Switching antidepressants gp notebook - Hospital for surgical excellence of oakbend health system - What makes a website reliable - Cases in operations management robert johnston pdf - Lack of cohesiveness - Npv case study with solution - Case Management Process Section 4: Intake and Monitoring - Soccer and the fashion world case study - I love lucy job switching analysis - Stages of international marketing involvement - Banking business capability model - Buchan caves lakes entrance - Chapman company obtains 100 percent of abernethy - Unit VII Case Study - Week 6 Cases Consumer Behavior - Diagnostic Skill Application II - Bent little finger dominant or recessive - How did macbeth die - Maths for finance : Test 23 questions - Healthcare organizations that span several states - With what does the major moral theory known as virtue ethics primarily concern itself? - Aws double hung windows - Case 1 monsanto attempts to balance stakeholder interests - Hhmi biointeractive virus explorer answer key - Discussion Question - Trinity guildhall speech and drama - Rubrics for lab assessment - Business week conducted a survey of graduates from 30 - General Chemistry Homework Assignment - Sampling variation is caused by - 737 800 fuel burn per hour - Python code - Rotational inertia of disk and ring lab report - 2/32 surrey street pascoe vale - Week 2 discussion - Principles and techniques of fundraising - Lynne bought a bag of grapefruit answer - A solid non metal - Self reflection. - Owens.mylabsplus - Gibbs learning by doing - Griffith writing and referencing guide - What is a scholar practitioner walden - A5 - Big fat liar movie - Year 10 english standard elaborations - Capital Budgeting - Complete mathematics for cambridge igcse answers - Essay - Select the passage that is an example of imagism - Case Study 3 - The system is initially moving with the cable taut - Ben and jerry's swot analysis 2017 - Conservation of momentum in one dimension tutorial homework answers - Science - Among school children yeats analysis - 99 luftballons lyrics english - Which css property can be used to configure italic text? - Www2 aaahq org asclogin cfm - Mgt 521 final exam answers