Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Radioactive dating game answer key

26/03/2021 Client: saad24vbs Deadline: 2 Day

EDS 1021 Week 6 Interactive Assignment

Radiometric Dating

Objective: Using a simulated practical application, explore the concepts of radioactive decay and the half-life of

radioactive elements, and then apply the concept of radiometric dating to estimate the age of various objects.

Background: Review the topics Half-Life, Radiometric Dating, and Decay Chains in Chapter 12 of The Sciences.

Instructions:

1. PRINT a hard copy of this entire document, so that the experiment instructions may be easily referred to,

and the data tables and questions (on the last three pages) can be completed as a rough draft.

2. Download the Radiometric Dating Game Answer Sheet from the course website. Transfer your data

values and question answers from the completed rough draft to the answer sheet. Be sure to put your

NAME on the answer sheet where indicated. Save your completed answer sheet on your computer.

3. SUBMIT ONLY the completed answer sheet, by uploading your file to the digital drop box for the

assignment.

Introduction to the Simulation

1. After reviewing the background information for this assignment, go to the website for the interactive

simulation “Radioactive Dating Game” at http://phet.colorado.edu/en/simulation/radioactive-dating-game.

Click on DOWNLOAD to run the simulation locally on your computer.

2. Software Requirements: You must have the latest version of Java software (free) loaded on your computer

to run the simulation. If you do not or are not sure if you have the latest version, go to

http://www.java.com/en/download/index.jsp .

3. Explore and experiment on the 4 different “tabs” (areas) of the simulation. While playing around, think about

how the concepts of radioactive decay are being illustrated in the simulation.

Half Life Tab – observe a sample of radioactive atoms decaying - Carbon-14, Uranium-238, or ? (a custom-

made radioactive atom). Clicking on the “add 10” button adds 10 atoms at a time to the “decay area”. There

are a total of 100 atoms in the bucket, so clicking the “add 10” button 10 times will empty the bucket into the

decay area. Observe the pie chart and time graph as atoms decay. You can PAUSE, STEP (buttons at the

bottom of the screen) the simulation in time as atoms are decaying, and RESET the simulation.

Decay Rates Tab – Similar to the half-life tab, but different! Atom choices are carbon-14 and uranium-238.

The bucket has a total of 1000 atoms. Drag the slide bar on the bucket to the right to increase the number

of atoms added to the decay area. Observe the pie chart and time graph as atoms decay. Note that the

graph for the Decay Rates tab provides different information than the graph for the Half Life tab. You can

PAUSE, STEP (buttons at the bottom of the screen) the simulation in time as atoms are decaying, and

RESET the simulation.

Measurement Tab – Use a probe to virtually measure radioactive decay within an object - a tree or a

volcanic rock. The probe can be set to detect either the decay of carbon-14 atoms, or the decay of uranium-

238 atoms. Follow prompts on the screen to run a simulation of a tree growing and dying, or of a volcano

erupting and creating a rock, and then measuring the decay of atoms within each object.

Dating Game Tab – Use a probe to virtually measure the percentage of radioactive atoms remaining within

various objects and, knowing the half-life of radioactive elements being detected, estimate the ages of

objects. The probe can be set to either detect carbon-14, uranium-238, or other “mystery” elements, as

appropriate for determining the age of the object. Drag the probe over an object, select which element to

measure, and then slide the arrow on the graph to match the percentage of atoms measured by the probe.

The time (t) shown for the matching percentage can then be entered as the estimate in years of the object’s

age.

After playing around with the simulation, conduct the following four (4) short experiments. As you conduct

the experiments and collect data, fill in the data tables and answer the questions on the last three pages of

this document.

http://phet.colorado.edu/en/simulation/radioactive-dating-game
http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
Experiment 1: Half Life

1. Click on the Half Life tab at the top of the simulation screen.

2. Procedure:

Part I - Carbon-14

a. Click the blue “Pause” button at the bottom of the screen (i.e., set it so that it shows the “play” arrow). Click the “Add 10” button below the “Bucket o’ Atoms” repeatedly, until there are no more atoms left in the bucket. There are now 100 carbon-14 atoms in the decay area.

b. The half-life of carbon-14 is about 5700 years. Based on the definition of half-life, if you left these 100 carbon-14 atoms to sit around for 5700 years, what is your prediction of how many carbon-14 atoms will decay into the stable element nitrogen-14 during that time? Write your prediction in the “prediction” column for the row labeled “carbon-14”, in data table 1.

c. Click the blue “Play” arrow at the bottom of the screen. As the simulation runs, carefully observe what is happening to the carbon-14 atoms in the decay area, and the graphs at the top of the screen (both the pie chart and the time graph). Once all atoms have decayed into the stable isotope nitrogen-14, click the blue “Pause” button at the bottom of the screen (i.e., set it so that it shows the “play” arrow), and “Reset All Nuclei” button in the decay area.

d. Repeat step c. until you have a good idea of what is going on in this simulation. e. Repeat step c. again, but this time, watch the graph at the top of the window carefully, and click

“pause” when TIME reaches 5700 years (when the carbon-14 atom moving across the graph reaches

the red dashed line labeled HALF LIFE on the TIME graph). f. If you do NOT pause the simulation on or very close to the red dashed line, click the “Reset All Nuclei”

button and repeat step e. g. Once you have paused the simulation in the correct spot, look at the pie graph and determine the

number of nuclei that have decayed into nitrogen-14 at Time = HALF LIFE. Write this number in data table 1, in the row labeled “carbon-14”, under “trial 1”.

h. Click the “Reset All Nuclei” button in the decay area. i. Repeat steps e through h for two more trials. For each trial, write down in data table 1, the number of

nuclei that have decayed into nitrogen-14 at Time = HALF LIFE, in the row labeled “carbon-14”, under “trial 2” and “trial 3” respectively.

Part II – Uranium-238

a. Click “reset all” on the right side of the screen in the Decay Isotope box, and click “yes” in the box that pops up. Click on the radio button for uranium-238 in the Decay Isotope box. Click the blue “Pause”

button at the bottom of the screen (i.e., set it so that it shows the “play” arrow). Click the “Add 10” button below the “Bucket o’ Atoms” repeatedly, until there are no more atoms left in the bucket. There are now 100 uranium-238 atoms in the decay area.

b. The half-life of uranium-238 is 4.5 billion years!* Based on the definition of half-life, if you left these 100 uranium-238 atoms to sit around for 4.5 billion years, what is your prediction of how many uranium atoms will decay into lead-206 during that time? Write your prediction in the “prediction” column for the second row, labeled “uranium-238”, in data table 1.

c. Click the “Play” button at the bottom of the window. Watch the graph at the top of the window carefully, and click “pause” when the time reaches 4.5 billion years (when the uranium-238 atom

moving across the graph reaches the red dashed line labeled HALF LIFE on the time graph). d. If you don’t pause the simulation on or very close to the red line, click the “Reset All Nuclei” button and

repeat step c. e. Once you have paused the simulation in the correct spot, look at the pie graph and determine the

number of nuclei that have decayed into lead-206 at Time = HALF LIFE. Write this number in data table 1, in the row labeled “uranium-238”, under “trial 1”.

f. Click the “Reset All Nuclei” button in the decay area. g. Repeat steps c through e for two more trials. For each trial, write down in data table 1, the number of

nuclei that have decayed into lead-206 at Time = HALF LIFE, in the row labeled “uranium-238”, under “trial 2” and “trial 3” respectively.

3. Calculate the average number of atoms that decayed for all three trials of carbon-14 decay. Do the same for

all three trials uranium-238 decay. Write the average values for each element under “averages”, the last

column in data table 1.

4. Answer the five (5) questions for Experiment 1 on the Questions page. * Unlike Carbon-14, which undergoes only one radioactive decay to reach the stable nitrogen-14, uranium-238 undergoes MANY decays into many intermediate unstable elements before

finally getting to the stable element lead-206 (see the decay chain for uranium-238 in chapter 12 for details).

Experiment 2: Decay Rates

1. Set Up: Click on the Decay Rates tab at the top of the simulation screen.

2. Procedure

Part I – Carbon-14

a. In the Choose Isotope area on the right side of the screen, click the button next to carbon-14. Recall

that carbon-14 has a half-life of about 5700 years. b. Drag the slide bar on the bucket of atoms all the way to the right. This will put 1,000 radioactive atoms

into the decay area. When you let go of the slide bar, the simulation will start right away. If you missed seeing the simulation run from the start, start it over again by clicking “Reset All Nuclei”, and keep your eyes on the screen. Watch the graph at the bottom of the screen as you allow the simulation to run until all atoms have decayed.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Homework Tutor
Top Essay Tutor
Best Coursework Help
Assignment Helper
24/7 Assignment Help
Engineering Help
Writer Writer Name Offer Chat
Homework Tutor

ONLINE

Homework Tutor

I have read your project details. I can do this within your deadline.

$19 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$122 Chat With Writer
Best Coursework Help

ONLINE

Best Coursework Help

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$44 Chat With Writer
Assignment Helper

ONLINE

Assignment Helper

I will cover all the points which you have mentioned in your project details.

$37 Chat With Writer
24/7 Assignment Help

ONLINE

24/7 Assignment Help

I have read your project details. I can do this within your deadline.

$105 Chat With Writer
Engineering Help

ONLINE

Engineering Help

I will cover all the points which you have mentioned in your project details.

$127 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Cardinia shire fire restrictions - Capella capstone project - How to calculate how many fte are needed - Week 10 - Nurse burnout pico question - 3 common hazards in tim hortons - Physical Security - 5 - la rutina de silvia fill in the blanks with the appropriate choices from the cues. - Wolf of wall street analysis essay - Byron pitts step out on nothing summary - Prepare a schedule showing physical units of production - Rm maths learning system - Business information system assignment - Irwell unit fairfield hospital - Short essay - Curse of the black stone rs3 - Brian ray creed original motion picture soundtrack songs - Hw 4 - Elephant and piggie we are in a book - What is the noon sun angle on april 11 - Cybersecurity Planning - Organizational dissidence in audit firms is created when - Radex model of criminal differentiation - Cajas de carton chapter 4 summary - Laying out arnold palmer hospital's new facility - 25 point programme nazis - Defence mental health and wellbeing strategy - Bond energy of f2 - Auditing - 4 phases of adlerian therapy - Island man poem questions - Risk management strategy - Ward 32 victoria hospital kirkcaldy - Ben stacy blue man - Mussel slough is located in the - Harmonic analysis in matlab - Cessna caravan for lease - Singapore business culture and practices - Schizophrenia safety plan - Computer System Technology FinalExam - Macrogol 20000 gc column - Can bus common mode choke - Blackvue dr750lw 2ch firmware - Mountain view community hospital er diagram - Flowers for algernon summary progress report 12 - Pp - Https://www.thenutracafe.com/es/keto-360-slim/ - Blake robbins harriton high school - Volleyball terminology for beginners - Drink more water persuasive speech - Deliverable 1 – Healthcare Human Resource Standards and Practices Page-HSA5500 - Business model template download - Rainbow chicken share price history - Experimental techniques in biochemistry - Move assignment - St james the great catholic church peckham - Connecting to cloud sql from external applications - Brewer and treyens 1981 - Compiled a thousand and one arabian nights tea bag diffusion lab reportcompiled a thousand and one arabian nights tea bag diffusion lab report - 4 pics 1 word brain in lightbulb man smelling wine - Excel Quiz - Home easy remote he 300 - Anil shinghal death dallas tx - Https ess kroger com oneforce paystub paystub select do - Mpi world education congress - ANA - Igcse double award science syllabus - How do solar cooker relate to conics - Research methods - How to write electronic configuration of chromium - Project management conveyor belt project - Dulux namadji colour schemes - Grasscutter farming in ghana - Cpl meteorology question bank - Final paper - Writing the equation of a rational function given its graph - Math Assessment - The witching hour roald dahl - Need to complete my paper - Certificate iv in tertiary preparation - Pvc smoke developed index - How venture capitalists evaluate potential opportunities - 350 word answer - Which best connects a multimedia element to a blog's purpose - Religious Discrimination - Business - Apple customer service training manual - Which line best illustrates alliteration - Test of language competence level 2 - Hazardous area inspection checklist - Con ecmu sms 1 - Factors and multiples poster - Takemoto corporation borrowed - Lymphoscintigraphy cpt code - Australia's first peoples cultural awareness for health online module - Western power moving house - Zamil air conditioners catalogue - How to make a mousetrap car with cds - The regency grand hotel case - Doubting thomas powerpoint