Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Round 523 to the nearest hundred

18/11/2021 Client: muhammad11 Deadline: 2 Day

F-1

Stat 423, Stat 523 Formulas Chapter 7 Sections 7.1, 7.2, 7.3 We take a random sample X1, …, Xn from N(µ,s2) Two-Sided 100(1-a)% Confidence Intervals for µ

Requirements Confidence Interval Normal, s known

Normal, s unknown

Chapter 8 Sections 8.1, 8.2, 8.4 Steps in Testing Hypotheses 1. null hypothesis H0 and alternative hypothesis Ha H0: µ = µ0 Ha: µ > µ0, µ < µ0 or µ ¹ µ0 where µ0 is the known hypothesized value of µ. 2. test statistic

Requirements Test Statistic Reference Distribution Normal, s known

N(0,1)

Normal, s unknown

tn-1

3. rejection region or P-value (a = level of significance)

Ha

Rejection Region (RR) Z test T test

µ > µ0 z ³ za t ³ ta,n-1 µ < µ0 z £ -za t £ -ta,n-1 µ ¹ µ0 z ³ za/2 or z £ -za/2 t ³ ta/2,n-1 or t £ -ta/2,n-1

Ha

P-value

Z test R Command T test R Command

µ > µ0 1 - P(Z £ z) 1-pnorm(z) P(tn-1 ³ t) 1-pt(t,n-1)

µ < µ0 P(Z £ z) pnorm(z) P(tn-1 £ t) pt(t,n-1)

µ ¹ µ0 2[1 - P(Z £ |z|)] 2*(1-pnorm(abs(z))) 2P(tn-1 ³ |t|) 2*(1-pt(abs(t),n-1)) 4. Conclusion: Reject H0 at the a level of significance if:

• test statistic is inside the RR or P-value < a.

÷÷ ø

ö çç è

æ s ×+

s ×- aa

n zx ,

n zx

22

÷÷ ø

ö çç è

æ ×+×- -- aa n s

tx, n

s tx 1n,1n, 22

n

x z 0

s µ-

=

n s

x t 0

µ- =

g zg 0.100 1.282 0.050 1.645 0.025 1.960 0.010 2.326 0.005 2.576 0.001 3.09

F-2

Chapter 9 Section 9.1 z Tests and CIs Assumptions

• X1, X2, ..., Xm = data from population 1 with mean µ1 and variance s12 • Y1, Y2, ..., Yn = data from population 2 with mean µ2 and variance s22

• data:

Case I Normal Populations with Known Variances Hypothesis Test:

1. H0: µ1 - µ2 = D0 vs. Ha: where D0 is a known constant (zero usually).

2. Test statistic:

3. Rejection region and P-value Ha Rejection Region P-value P-value in R µ1 - µ2 > D0 z ³ za 1 - P(Z £ z) 1-pnorm(z) µ1 - µ2 < D0 z £ -za P(Z £ z) pnorm(z) µ1 - µ2 ¹ D0 z £ -za/2 or z ³ za/2 2[1 - P(Z £ |z|)] 2*(1-pnorm(abs(z)))

100(1-a)% Confidence Intervals for µ1 - µ2:

2-sided CI:

1-sided CIs: ,

where za is defined like in Chapters 7 and 8. Case II Large-Sample Procedures (s1 and s2 are unknown, m>30, n>30) Replace s1 and s2 in Case I with standard deviations s1 and s2.

ïî

ï í ì

===

===

nsize sample ,sdeviation standard ,y mean:2 Sample

msize sample ,sdeviation standard ,x mean:1 Sample

2

1

ï î

ï í

ì

D¹µ-µ D<µ-µ D>µ-µ

021

021

021

)1,0(N~

nm

)yx( z

2 2

2 1

0

s +

s

D-- =

nm z)yx(

2 2

2 1

2

s +

s ±- a

, nm

z)yx( 2 2

2 1

÷ ÷

ø

ö

ç ç

è

æ ¥+

s +

s -- a nm

z)yx( , 2 2

2 1

÷ ÷

ø

ö

ç ç

è

æ s +

s +-¥- a

9A

9B

F-3

Section 9.2 t Test and Confidence Interval • Normal populations, s1 and s2 are unknown, and sample sizes are small.

Case III t-based Procedures

, round down to the nearest integer.

t Test:

1. H0: µ1 - µ2 = D0 vs. Ha: 2. Test statistic:

3. Rejection region and P-value Ha Rejection Region P-value P-value in R µ1 - µ2 > D0 t ³ ta, n P(tn ³ t) 1-pt(t,n) µ1 - µ2 < D0 t £ -ta, n P(tn £ t) pt(t,n) µ1 - µ2 ¹ D0 t £ -ta/2, n or t ³ ta/2, n 2P(tn ³ |t|) 2*(1-pt(abs(t),n)) 100(1-a)% Confidence Intervals for µ1 - µ2:

2-sided CI:

1-sided CI: ,

1n

n s

1m

m s

n

s

m

s

22 2

22 1

22 2

2 1

-

÷÷ ø

ö çç è

æ

+ -

÷÷ ø

ö çç è

æ

÷ ÷ ø

ö ç ç è

æ +

=n

ï î

ï í

ì

D¹µ-µ D<µ-µ D>µ-µ

021

021

021

2 2

2 1

0 t~

n

s

m

s

yx t n

+

D-- = !

n

s

m

s t)yx(

2 2

2 1

,2 +±- na

, n

s

m

s t)yx(

2 2

2 1

, ÷ ÷

ø

ö

ç ç

è

æ ¥++-- na n

s

m

s t)yx( ,

2 2

2 1

, ÷ ÷

ø

ö

ç ç

è

æ ++-¥- na

9C

F-4

Chapter 10 Section 10.1 Single-Factor ANOVA (Equal Sample Sizes) • I = total number of treatments • J = common number of replications of each treatment • µi = mean of treatment i (for i = 1, 2, ..., I) • Xij = random variable that represents the measurement from the jth EU under

treatment i (for i = 1, ..., I and j = 1, ..., J) The One-Way Fixed Model: Xij = µi + Îij where Îi1, Îi2, ..., ÎiJ are iid N(0,s2). Definition Sums of Squares (SS)

Treatment i average: Grand Average:

• Total SS = Treatment i standard deviation = si

• Treatment (Among) SS =

• Error (Within) SS =

Þ ,

-------------------------------------------------------------------------------------- Alternative (Working) Formulas

Let , .

• SSE = SST – SSTr Remarks: • is called a residual and eij estimates Îij. • SST = SSTr + SSE Þ SSE = SST – SSTr. -------------------------------------------------------------------------------------- ANOVA table:

J

x

x

J

1j ij

.i

å ==

IJ

x

x

I

1i

J

1j ij

..

å å = ==

( )å å = =

-= I

1i

J

1j

2 ..ij xxSST

( )å =

-= I

1i

2 ...i xxJSSTr

( )å å = =

-= I

1i

J

1j

2 .iij xxSSE

( ) )1/( 1

. 2 --= å

= Jxxs

J

j iiji å

=

-= I

1i

2 is)1J(SSE I/sMSE Error Squared Mean

I

1i

2 i ÷÷ ø

ö çç è

æ == å

=

åå å == =

== J

1j ij.i

I

1i

J

1j ij.. xx ,xx IJ

x CF factor correction

2 ..==

CFxSST I

1i

J

1j

2 ij -= å å

= =

CF J

x

SSTr

I

1i

2 .i

-= å =

.iijij xxe -=

Source of Variation

degrees of freedom (df)

Sum of Squares (SS)

Mean Square (MS)

Test Statistic F

P-value

P-value in R

Treatments (Among)

I-1

SSTr

1-pf(F,I-1,I(J-1))

Error (Within)

I(J-1) SSE

Total IJ-1 SST

1I SSTr

MSTr -

= MSE MSTr

F = ( )FFP )1J(I,1I >--

)1J(I

SSE MSE

- =

10A

10B

10C

F-5

When H0: µ1 = µ2 = ... = µI is true, ~ FI-1,I(J-1).

Hypothesis Testing H0: µ1 = µ2 = ... = µI vs. Ha: H0 is false

• F-statistic:

• P-value: P-value = (In R: 1-pf(F,I-1,I*(J-1)))

• rejection region: RR = {F > Fa,I-1,I(J-1)} ------------------------------------------------------------------------------------- Section 10.2 Multiple Comparison in ANOVA (Equal Treatment Reps J) Tukey's Procedure for Simultaneous 100(1-a)% CIs for µi-µj:

T Method for Significant Differences

1. Compute .

2. List the sample means in increasing order. 3. Underline groups of means that do not differ by more than w. --------------------------------------------------------------------------------------

Contrast where .

Hypothesis Test (Equal Sample Sizes J)

1. H0: C = c0 vs. Ha:

2. Test Statistic

3. Rejection Region and P-value Ha Rejection Region P-value P-value in R C > c0 t ³ ta, I(J-1) P(tI(J-1) ³ t) 1-pt(t,I*(J-1)) C < c0 t £ -ta, I(J-1) P(tI(J-1) £ t) pt(t,I*(J-1)) C ¹ c0 t £ -ta/2, I(J-1) or t ³ ta/2, I(J-1) 2P(tI(J-1) ³ |t|) 2*(1-pt(abs(t),I*(J-1)))

---- F Test for H0: C = 0 vs. Ha: C ¹ 0

, Test Statistic

• Rejection Region ; • P-value = , (in R) 1-pf(F,1,I*(J-1)))

MSE MSTr

F =

MSE MSTr

F =

( )FFP )J(I,I >-- 11

( ) J MSE

Qxx )1J(I,I,ji -a±-

J MSE

Qw )1J(I,I, -a=

.ix

å =

µ= I

1i iicC 0c

I

1i i =å

=

ï î

ï í

ì

¹ < >

0

0

0

cC

cC

cC

)1J(I I

1i

2 i

0 t~

J

cMSE

cĈ t -

= å

- =

å =

´= I

1i

2 i

2

c

Ĉ J)C(SS )1J(I,1F~MSE

)C(SS F -=

}FF{RR )1J(I,1, -a>=

( )1, ( 1)I JP F F- >

10D

10E

10F

In R: qtukey(1-a,I,I*(J-1))

F-6

100(1-a)% CIs for Contrast C (Equal Sample Sizes)

2-sided:

1-sided:

------------------------------------------------------------------------------------- Section 10.3 ANOVA for Unequal Sample Sizes Ji = sample size for treatment i, n = SJi (total sample size).

Treatment i total: , Treatment i average:

Grand Average:

• Total Sum of Squares:

• Treatment Sum of Squares:

• Error Sum of Squares: SSE = SST – SSTr Treatment i standard deviation = si

ANOVA table: Source df SS MS F P-value P-value in R Treatments

I-1 SSTr

1-pf(F,I-1,n-I)

Error n-I SSE

Total n-1 SST • Reject Region = {F ³ Fa,I-1,n-I}

-------------------------------------------------------------------------------------- T Method for Significant Differences (Unequal Treatment Reps)

1. Compute for all pairs i,j where i¹j.

2. List the sample means in increasing order. 3. Underline and if they do not differ by more than wij.

J

cMSE

tĈ

I

1i

2 i

)1J(I,2

å =

-a±

J

cMSE

tĈ ,, , J

cMSE

tĈ

I

1i

2 i

)1J(I,

I

1i

2 i

)1J(I,

÷ ÷ ÷ ÷ ÷ ÷

ø

ö

ç ç ç ç ç ç

è

æ

+¥-

÷ ÷ ÷ ÷ ÷ ÷

ø

ö

ç ç ç ç ç ç

è

æ

¥+- åå =

-a =

-a

å =

= iJ

1j ij.i xx

i

.i .i J

x x =

n

x

x

I

1i

J

1j ij

..

i

å å = ==

( )å å = =

-= I

1i

J

1j

2 ..ij

i

xxSST n

x x

2 ..

I

1i

J

1j

2 ij

i

-= å å = =

( )å =

-= I

1i

2 ...ii xxJSSTr n

x

J

x 2.. I

1i i

2 .i -= å

=

å =

-= I

1i

2 ii s)1J(SSE

1I SSTr

MSTr -

= MSE MSTr

F = ( )FFP In,1I >--

In SSE

MSE -

=

J 1

J 1

2 MSE

Qw ji

In,I,ij ÷ ÷ ø

ö ç ç è

æ += -a

.ix

.ix .jx

10G

10H

10I

F-7

F-8

Hypothesis Test with Contrasts (Unequal Sample Sizes)

1. H0: C = c0 vs. Ha:

2. Test Statistic

3. Rejection Region and P-value Ha Rejection Region P-value P-value in R C > c0 t ³ ta, n-I P(tn-I ³ t) 1-pt(t,n-I)) C < c0 t £ -ta, n-I P(tn-I ³ |t|) pt(t,n-I) C ¹ c0 t £ -ta/2, n-I or t ³ ta/2, n-I 2P(tn-I ³ |t|) 2*(1-pt(abs(t),n-I)) 100(1-a)% CIs for Contrast C (Unequal Sample Sizes)

2-sided:

1-sided:

Special Case:

-------------------------------------------------------------------------------------- A Random Effects Model: Xij = µ + Ai + Îij where A1, A2, ..., AI are iid N(0,sA2) and Îi1, Îi2, ..., ÎiJ are iid N(0,s2). E(MSTr) = s2 + rsA2, E(MSE) = s2 where r=(n-SJi2/n)/(I-1). • F=MSTr/MSE tests H0: sA2 = 0 versus Ha: sA2 ¹ 0.

• Estimates: and where r=(n-SJi2/n)/(I-1).

• V(Xij) = s2 + sA2 = total variance observed in measurements • Estimate of V(Xij) =

• % of total variance explained by differences among treatments = %

ï î

ï í

ì

¹ < >

0

0

0

cC

cC

cC

In I

1i i

2 i

0 t~

J

c MSE

cĈ t -

= å

- =

}FF{RR

F~tF

0C:H vs. 0C:H

In,1,

In,1 2

a0

-a

-

>=

=

¹=

å =

-a± I

1i i

2 i

In,2 J

c MSEtĈ

, J

c MSEtĈ,

J

c MSEtĈ ,

I

1i i

2 i

In,

I

1i i

2 i

In, ÷÷ ÷

ø

ö

çç ç

è

æ ¥+-

÷÷ ÷

ø

ö

çç ç

è

æ +¥- åå

= -a

= -a

. J 1

with J

c replace,C If

j

I

1i i

2 i

j å =

µ=

MSEˆ2 =s r

MSEMSTrˆ2A -

=s

( ) 2A2ij ˆˆXV̂ s+s=

2 A

2

2 A

ˆˆ

ˆ 100

s+s

s ´

10J

10K

F-9

Chapter 11 Formulas Set Section 11.1 Two-Factor ANOVA with No Replications Notation • A = 1st factor, I = number of levels of A • B = 2nd factor, J = number of levels of B • Xij = the measurement from the combination of the ith level of A and jth level of B • xij = actual (observed) value of Xij Two-Way Additive Fixed Model Model equation and assumptions are

Xij = µ + ai + bj + Îij

where , and Îij's are iid N(0,s2). The average response at the

level i of A and level j of B is µij = E(Xij) = µ + ai + bj .

-------------------------------------------------------------------------------------- Parameter Estimates

Factor A, level i total and average:

Factor B, level j total and average: ,

Grand Average:

Parameter Estimate

µ

ai

bj

= + + is the predicted or fitted value.

eij = xij - is a residual which estimates Îij.

0 ,0 J

1j j

I

1i i åå

==

=b=a

J

x x ,xx .i.i

J

1j ij.i == å

=

I

x x ,xx j.j.

I

1i ijj. == å

=

IJ

x

x

I

1i

J

1j ij

..

å å = ==

..xˆ =µ

...ii xxˆ -=a

..j.j xx ˆ -=b

ijx̂ µ̂ iâ jb̂

ijx̂

11A

11B

F-10

Hypothesis Tests • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0 • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0

Sums of Squares df

IJ-1

I-1

J-1

(I-1)(J-1)

ANOVA Table

Source df SS MS F P-value P-value in R Factor A

I-1

SSA

1-pf(F,I-1,(I-1)*(J-1))

Factor B

J-1 SSB

1-pf(F,J-1,(I-1)*(J-1))

Error (I-1)(J- 1)

SSE

Total IJ-1 SST

, SSE = SST - SSA – SSB

• Factor A: RR = {F=MSA/MSE > Fa,I-1,(I-1)(J-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,(I-1)(J-1)}

------------------------------------------------------------------------------------- T Method for Significant Differences Compute

.

Apply • wA to

or • wB to

Block designs: ANOVA, T Method the same as above with Factor A = Blocks. Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij

( ) å åå å = == =

-=-= I

1i

2 ..

J

1j

2 ij

I

1i

J

1j

2 ..ij IJ

x xxxSST

( ) IJ

x x

J 1

xxJSSA 2 ..

I

1i

2 .i

I

1i

2 ...i -=-= åå

==

( ) IJ

x x

I 1

xxISSB 2 ..

J

1j

2 j.

J

1j

2 ..j. -=-= åå

==

( )å å = =

+--= I

1i

J

1j

2 ..j..iij xxxxSSE

1I SSA

MSA -

= MSE MSA

F = ( )FFP )1J)(1I(,1I >---

1J SSB

MSB -

= MSE MSB

F = ( )FFP )1J)(1I(,1J >---

)1J)(1I( SSE

MSE --

=

å å = =

= I

1i

J

1j

2 ijeSSE

åå ==

b -

+s=a -

+s=s= J

1j

2 j

2 I

1i

2 i

22

1J I

)MSB(E , 1I

J )MSA(E ,)MSE(E

scomparison B factor for I MSE

Qw

scomparison Afactor for J MSE

Qw

)1J)(1I(,J,B

)1J)(1I(,I,A

--a

--a

=

=

.I.2.1 x,...,x,x

J.2.1. x,...,x,x

11C

11D

F-11

Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij where the Ai's are iid N(0,sA2), the Bj's are iid N(0,sB2), and Îij's are iid N(0,s2).

tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0.

tests H0: sB2 = 0 vs. Ha: sB2 ¹ 0.

Estimates:

total variance = .

--- Two-Way Additive Mixed Model: Xij = µ + Ai + bj + Îij where the Ai's are iid N(0,sA2), Sbj=0, and Îij's are iid N(0,s2).

tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0.

tests H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0.

Estimates: , total variance =

-------------------------------------------------------------------------------------- Section 11.2 Two-Way ANOVA with Replications Two-Way Interaction Fixed Effects Model Xijk = kth observation for level i of A and level j of B.

Xijk = µ + ai + bj + gij + Îijk for i=1, ..., I, j=1, ...,J, k=1, ..., K and where

, for all i, for all j,

and Îij's are iid N(0,s2). The mean response at the level i of A and level j of B is µij = E(Xij) = µ + ai + bj + gij .

-------------------------------------------------------------------------------------- Estimates

, ,

, ,

Parameter Estimate

fitted value residual

µ

ai

bj

gij

2 B

22 A

22 I)MSB(E ,J)MSA(E ,)MSE(E s+s=s+s=s=

MSE MSA

F =

MSE MSB

F =

I MSEMSBˆ,

J MSEMSAˆ,MSEˆ 2B

2 A

2 -=s -

=s=s

( ) 2B2A2ij ˆˆˆXV̂ s+s+s=

å =

b -

+s=s+s=s= J

1j

2 j

22 A

22

1J I

)MSB(E ,J)MSA(E ,)MSE(E

MSE MSA

F =

MSE MSB

F =

J MSEMSAˆ,MSEˆ 2A

2 -=s=s ( ) 2A2ij ˆˆXV̂ s+s=

0 ,0 J

1j j

I

1i i åå

==

=b=a 0 J

1j ijå

=

=g 0 I

1i ijå

=

=g

å å å = = =

= I

1i

J

1j

K

1k ijk... xx IJK

x x ...... = K

x

x

K

1k ijk

.ij

å ==

J

x

x ,xx

J

1j .ij

..i

J

1j

K

1k ijk..i

å å å = = =

== I

x

x ,xx

I

1j .ij

.j.

I

1i

K

1k ijk.j.

å å å = = =

==

.ijijjiij xˆ ˆˆˆx̂ =g+b+a+µ=

ijijkijk x̂xe -=

...xˆ =µ

.....ii xxˆ -=a

....j.j xx ˆ -=b

....j...i.ijij xxxxˆ +--=g

11E

11F

11G

F-12

Hypothesis Tests • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0 • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0 • Interaction: H0: gij = 0 for all i,j vs. Ha: at least one gij ¹ 0

ANOVA Table (Two-Way Interaction Fixed Model)

Source df SS MS F P-value P-value in R A

I-1 SSA

1-pf(F,I-1,I*J*(K-1))

B J-1 SSB

1-pf(F,J-1,I*J*(K-1))

Interaction (I- 1)(J-1)

SSAB

1-pf(F,(I-1)*(J-1),I*J*(K-1))

Error IJ(K-1) SSE

Total IJK-1 SST

• Factor A: RR = {F=MSA/MSE > Fa,I-1,IJ{K-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,IJ(K-1)} • Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJ(K-1)}

-------------------------------------------------------------------------------------- T Method for Factor Levels (Use only when interactions are not significant.) Note that I=# of A levels, J=# of B levels, K=# of replications.

Section 11.3 Three-Factor Fixed Effects ANOVA

Xijkl = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk + Îijk for i=1, ..., I, j=1, ...,J, k=1, ..., K, l=1, ..., L, where Îijk's are iid N(0,s2) and the sum of parameters over any subscript is 0:

= = = =

= = = = .

The mean response at level i of A, j of B and k of C is µijk = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk .

1I SSA

MSA -

= MSE MSA

F = ( )FFP )1K(IJ,1I >--

1J SSB

MSB -

= MSE MSB

F = ( )FFP )1K(IJ,1J >--

)1J)(1I( SSAB

MSAB --

= MSE MSAB

F = ( )FFP )1K(IJ),1J)(1I( >---

)1K(IJ SSE

MSE -

=

ï ï î

ïï í

ì

=

=

-a

-a

.J..2..1.)1K(IJ,J,B

I..2..1..)1K(IJ,I,A

x,...,x,x to apply IK MSE

Qw

x,...,x,x to apply JK MSE

Qw

=d=b=a ååå ===

K

1k k

J

1j j

I

1i i

I

1i

AB ijå

=

g J

1j

AB ijå

=

g I

1i

AC ikå

=

g å =

g K

1k

AC ik

J

1j

BC jkå

=

g

K

1k

BC jkå

=

g I

1i ijkå

=

g J

1j ijkå

=

g 0 K

1k ijkå

=

=g

11I

11J

11H

F-13

Test of Hypotheses • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0 • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0 • Factor C: H0: d1 = d2 = ... = dK = 0 vs. Ha: at least one dk ¹ 0 • AB Interaction: H0: all gABij = 0 vs. Ha: at least one gABij ¹ 0 • AC Interaction: H0: all gACik = 0 vs. Ha: at least one gACik ¹ 0 • BC Interaction: H0: all gBCjk = 0 vs. Ha: at least one gBCjk ¹ 0 • ABC Interaction: H0: all gijk = 0 vs. Ha: at least one gijk ¹ 0

Assume that there are L observations from each ABC level combination (balanced data). Total sample size is IJKL. ANOVA Table (3 Factors Fixed Effects Model) Source df SS MS F P-value* A

I-1 SSA

B J-1 SSB

C K-1 SSC

AB Interaction

(I-1)(J-1) SSAB

AC Interaction

(I-1)(K-1) SSAC

BC Interaction

(J-1)(K-1) SSBC

ABC Interaction

(I-1) ´(J-1)(K-1)

SSABC

Error IJK(L-1) SSE

* In R, 1-pf(F,m,n) gives P(Fm,n > F).

Total IJKL-1 SST ! There should be at least L=2 observations per treatment to test for all interactions. If L=1, there is no MSE and, hence, no F-test of interactions. !

• Factor A: RR = {F=MSA/MSE > Fa,I-1,IJK{L-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,IJK(L-1)} • Factor C: RR = {F=MSC/MSE > Fa,K-1,IJK(L-1)} • AB Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJK(L-1)} • AC Interaction: RR = {F=MSAC/MSE > Fa,(I-1)(K-1),IJK(L-1)} • BC Interaction: RR = {F=MSBC/MSE > Fa,(J-1)(K-1),IJK(L-1)} • ABC Interaction: RR = {F=MSABC/MSE > Fa,(I-1)(J-1)(K-1),IJK(L-1)}

T Method for Factor Levels (use when no interaction is significant)

where {total reps per level} = JKL for factor A = IKL for factor B = IJL for factor C

Coefficient of Determination: , Adjusted R2:

1I SSA

MSA -

= MSE MSA

F = ( )FFP )1L(IJK,1I >--

1J SSB

MSB -

= MSE MSB

F = ( )FFP )1L(IJK,1J >--

1K SSC

MSC -

= MSE MSC

F = ( )FFP )1L(IJK,1K >--

)1J)(1I( SSAB

MSAB --

= MSE MSAB

F = ( )FFP )1L(IJK),1J)(1I( >---

)1K)(1I( SSAC

MSAC --

= MSE MSAC

F = ( )FFP )1L(IJK),1K)(1I( >---

)1K)(1J( SSBC

MSBC --

= MSE MSBC

F = ( )FFP )1L(IJK),1K)(1J( >---

)1K)(1J)(1I( SSABC

MSBC ---

= MSE

MSABC F = ( )FFP )1L(IJK),1K)(1J)(1I( >----

)1L(IJK SSE

MSE -

=

level per reps total

MSE Qw df} {MSE levels}, factor of {#, ´= a

SST SSE

R -= 12 SST SSE

Radj ´÷ ø ö

ç è æ-=

df error df total

12

11K

F-14

Latin Squares Design Model Assumptions

Xij(k) = µ + ai + bj + dk + eij(k)

where and eij(k)’s are iid N(0,s2).

N = # of factor levels (note that N=I=J=K)

, , ,

, , ,

Sums of Squares (Latin Squares Design)

Sums of Squares df

N2-1

N-1

N-1

N-1

(N-1)(N-2)

Note: SSE = SST – SSA – SSB – SSC

T Method for Factor Levels: For all factors, use .

-------------------------------------------------------------------------------------- Section 11.4 2p Factorial Experiments, Factor Effects, Yates Algorithm 23 Factorial Model: Xijkl = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk + Îijkl for i=1,2, j=1,2, k=1,2, l=1, ..., L Estimates • • Fitted main effects of factors A, B and C

• Fitted 2-way interactions

• Fitted 3-way interactions

0kji =d=b=aå åå

å= j

)k(ij..i xx å= i

)k(ij.j. xx å= j,i

)k(ijk.. xx å= j,i

)k(ij... xx

N

x x ..i..i = N

x x .j..j. = N

x x k..k.. = 2

... ...

N

x x =

( ) 2

2 ...

N

1i

N

1j

2 )k(ij

N

1i

N

1j

2 ...)k(ij

N

x xxxSST -=-= å åå å

= == =

( ) 2

2 ...

N

1i

2 ..i

N

1i

2 .....i

N

x x

N 1

xxNSSA -=-= åå ==

( ) 2

2 ...

N

1j

2 .j.

N

1j

2 ....j.

N

x x

N 1

xxNSSB -=-= åå ==

( ) 2

2 ...

N

1k

2 k..

N

1k

2 ...k..

N

x x

N 1

xxNSSC -=-= åå ==

( ) 2N

1i

N

1j ...k...j...i)k(ij x2xxxxSSE å å

= =

+---=

N

MSE Qw df} {MSE N,, ´= a

....xˆ =µ

.....k..k......j.j.......ii xx ˆ xxˆ xxˆ -=d-=b-=a

.....k....j..jk. BC jk

.....k.....i.k.i AC ik

......j....i..ij AB ij

xxxxˆ

xxxxˆ

xxxxˆ

+--=g

+--=g

+--=g

.....k....j....i.jk..k.i..ij.ijkijk xxxxxxxxˆ -+++---=g

11L

11M

F-15

Yates Algorithm 1. List sample means (xbars) in Yates standard order.

• Start with (1) then a. • "Multiply by b" the previous treatments to get b and ab. • "Multiply by c" the previous treatments to get c, ac, bc, abc. etc. There should be 2p treatments in the list.

2. The next column is obtained by adding the numbers in the previous column in pairs and subtracting in pairs (2nd minus 1st). Repeat this process p times.

3. Divide the pth new column by 2p. The results are the overall mean and fitted effects (with all factors at the 2nd level).

Reverse the sign of the fitted effect if you change an odd number of subscripts. -------------------------------------------------------------------------------------- Section 11.4 Fractional Factorial Studies A. Choice of 1/2q Fraction of a 2p Factorial 1. Pick any p-q factors and list all their level combinations using -'s and +'s. 2. Pick q different groups of these "first" factors and multiply the signs of the

members of each group. Use the q products to determine the levels of the remaining q factors.

B. Determining the "Alias Structure" of the 1/2q Fraction Multiplication Rules:

• A*A = B*B = ... = I • I*A = A, I*B = B, etc.

1. Take the q generators and apply multiplication so that I is on the left-hand-side of the equation.

2. Multiply (LHS x LHS and RHS x RHS) the new equations in pairs, then in triples, then in sets of four, etc.

(2q - 1) factor products are equivalent to I. Factor effects are aliased in 2p-q groups of 2q members. C. Analyzing a 2p-q Fractional Factorial 1. Initially ignore the "last" q factors and treat the data as a full factorial in

the "first" p-q factors. Estimate the factor effects (e.g. using formulas in Section 11.4 or by Yates algorithm = p-q cycles and divide last cycle by 2p-q) and judge their statistical significance. a. (with replication)

• Compute

or get them from the ANOVA table.

• Compute .

A 100(1-a)% CI for an effect is . Note that an effect is judged not statistically significant at the a level

if .

b. If no replication, do a normal probability plot of fitted effects (exclude ). 2. Interpret the estimates in the light of the alias structure.

1)- size (sample of sumdf 1)- size (sample of sum

]s ingcorrespond1)- size [(sample of sum MSE

2

=

´ =

sizes sample all of sreciprocal of sum 2

1 MSEt)r(

q-pdf,2 ´´=a a

)(r effect ^

)(r effect ^

a<

µ̂

11N

11O

F-16

Chapter 12 Formulas Linear Model: where e's are iid N(mean=0,variance=s2).

• b1 = average change in Y for every unit change in x • µy•x* = b0 + b1x* = average response at x* • s2y•x* = variance of Y at x=x*

--------------------------------------------------------------------------------------

Least-Squares Estimates:

Fitted Value:

Residual:

or .

Estimate of s2: mean square error = .

-------------------------------------------------------------------------------------- Numerical Diagnostics

Sample Correlation:

sx and sy are the sd's of x and y => .

Coefficient of Determination: , SSR = SST-SSE

Adjusted R2 = where MST = SST/(n-1)

ii10i xY e+b+b=

( )

( ) n

x x

n yx

yxˆ 2

i2 i

ii ii

1

åå

ååå -

- =b xˆyˆ 10 b-=b

i10i x ˆˆŷ b+b=

iii ŷye -=

( ) åå ==

=-= n

1i

2 i

n

1i

2 ii eŷySSE ii1i0

2 i yx

ˆyˆySSE ååå b-b-=

2n SSEˆMSE 2 -

=s=

( ) ( )

( ) ( )

( )( ) n

yx yxyyxxS

n

y yyyS or SST

n

x xxxS

ii iiiixy

2 i2

i 2

iyy

2 i2

i 2

ixx

åååå

ååå

ååå

-=--=

-=-=

-=-=

yyxx

xy

SS

S r =

y

x 1 s

sˆr b=

SST SSR

SST SSE

1R2 =-=

MST MSE

1 2n

1R)1n( R

2 2 adj -=-

-- =

12A

12B

12C

F-17

Section 12.3 Inference for b1

, .

100(1-a)% CI for b1 :

Hypothesis Test 1. H0: b1 = b10, Ha: b1 > b10, b1 < b10 or b1 ¹ b10

2. test statistic

3. rejection region and P-value (a = level of significance) Ha Rejection Region P-value P-value in R

b1 > b10 t ³ ta,n-2 1 - P(tn-2 £ t) 1-pt(t,n-2)) b1 < b10 t £ -ta,n-2 P(tn-2 £ t) pt(t,n-2) b1 ¹ b10 t £ -ta/2,n-2 or t ³ ta/2,n-2 2[1 - P(tn-2 £ |t|)] 2*(1-pt(abs(t),n-2)) ANOVA table with F-test to test H0: b1 = 0 versus b1 ¹ 0 (model utility test) See Formulas 12B and 12C for SSR, SSE and SST.

Source df SS MS=SS/df F P-value P-value in R Regression 1 SSR MSR F=MSR/MSE P(F1,n-2 > F) 1-pf(F,1,n-2) Error n-2 SSE MSE Total n-1 SST

The rejection region is {F=MSR/MSE ³ Fa,1,n-2} --------------------------------------------------------------------------------------

Section 12.4 CI for Mean Response µy.x and Prediction Interval at x=x* CI for Mean Response At x=x*, the mean response is µy.x* = b0 + b1x*. 100(1-a)% CI for µy.x*:

where

Prediction Interval 100(1-a)% PI for a response Y at x=x*:

or

MSEˆ2 =s xx

2 2 ˆ

S

ˆ s

1

s =

b

1 ˆ2n,2

1 st ˆ

b-a ×±b

1 ˆ

101

s

ˆ t

b

b-b =

ŷ2n,2 stŷ ×± -a

( ) xx

2*

ŷ S xx

n 1

ss -

+=

( ) xx

2*

2n,2 S xx

n 1

1stŷ -

++×± -a 2 ŷ

2 2n,2

sstŷ +×± -a

12D

12E

F-18

Section 13.1 More on Residuals ith residual (random version) is

where

• Standardized residual where

Diagnostic Plots 1. ei* (or ei) versus xi (no pattern) 2. ei* (or ei) versus yi (no pattern) 3. (linear) 4. normal probability plot of ei* (or ei) (linear) Section 13.2 Transformed Variables • intrinsically linear models - function of x and y that can be transformed

as y' = b0 + b1x'

where y' = {function of y only} and x' = {function of x only} Sections 13.4, 13.3 Multiple and Polynomial Regression Model: Y = b0 + b1x1 + b2x2 + ... + bkxk + e where the e's are independently distributed N(0,s2) Data: (x11 , x21, ..., xk1, y1), (x12 , x22, ..., xk2, y2), ..., (x1n , x2n, ..., xkn, yn)

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Assignment Hut
Quality Assignments
Quick N Quality
A Grade Exams
Homework Guru
Helping Hand
Writer Writer Name Offer Chat
Assignment Hut

ONLINE

Assignment Hut

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$45 Chat With Writer
Quality Assignments

ONLINE

Quality Assignments

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$27 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$35 Chat With Writer
A Grade Exams

ONLINE

A Grade Exams

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$42 Chat With Writer
Homework Guru

ONLINE

Homework Guru

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$32 Chat With Writer
Helping Hand

ONLINE

Helping Hand

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$16 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Greek mythology research project ideas - Mo yan life and death - Juan ponce de leon voyage map - Broken hill court listings - Gpower hhu de - 2015 general maths hsc answers - Week 4 pract-6640pract - Family therapy treatment planner pdf - Otitis media soap note - Who wrote empire of the summer moon - Chapter 13 strategy balanced scorecard and strategic profitability analysis - Pico question examples hypertension - Mass effect 3 armax arena cerberus armor - Case Study 3: Suicide - The case analysis of the scandal of enron - Cost accounting (120 words) - Quilt of a country answers - Arup family health clinic - Should metacarta take the sevin rosen offer - Texture balloon sensory play - Coding with mosh sql - American standard code for information interchange table - Traditional african music youtube - Reason relativity and responsibility in computer ethics - Supervisory management essay - Cause and Effect Argument Essay Assignment related to the sale, trade, or donation of organs - Http teachingamericanhistory org static neh interactives civilwar lesson1 - Group Assignment - Oreo biscuits marketing strategy in india - Macquarie university undergraduate fees - Who offers Legitimate Criminology Essay Writing Services? - Abc does not conform to gaap because it - Barracania - Motorola's global strategy case study answers - South lanarkshire holidays 2014 - At java util scanner throwfor unknown source - Shadow health focused exam chest pain - Dr dilis clare thyroid - Nursing - Southwest airlines stanford case study solution - Prairie view a&m scholarships - Strategic Planning 8352 - Brindabella business park postcode - Annuity transformation method - Acrylic bullet proof glass - Melbourne transport zones map - Nike data breach - PHIL 105: Critical Thinking - I Need two Responses Per Each Soap Note Discussion Total 8 Responses. Posts Will Be A Minimum Of 100 Words, APA Format.One Reference Per Each Discussion - Obsessive compulsive disorder nursing diagnosis - Antes de acostarse, maría se cepilla los dientes. lógico ilógico - Grammar translation method demonstration - Water by the spoonful full pdf - List and briefly define ieee services - Persuasive speech on why college athletes should be paid - One can chase a thousand and two ten thousand verse - Expensive but reasonable sets of jewelry - Cebit australia 2017 exhibitor list - Polychromatic color scheme examples - NELLMAPIUS .[【0610482071】..]@)) EARLY TERMINATION- PILLS FOR SALE IN NELLMAPIUS RANDFONTEIN, COSMOS CITY - 3 phases of strategic planning - Nr 511 week 4 midterm - Determine the specific volume of refrigerant vapor - Larry's tax basis in his partnership interest - Skeletal and muscular system worksheet - I need a 2- to 3-pages on Microsoft Word document. - Progressive writing assignment - Barclay barrios emerging pdf - Idexx culture and sensitivity - Red oat grass adaptations - Redo - Virtual Classroom Discussion Exercise - Biotic factors of an ecosystem - Culture and strategy ppt - Gini coefficient numerical example - Valpak case study - Biomet 3i external hex implants - What did henry hess invent - Group properties roles norms status size cohesiveness and diversity - Calculate the freezing point of the solution - Csec english sba written report - Faye sayer time team - Fin 534 homework set 2 - Https partners gorenje com gsd - Www ewre com au hobart - Servant leadership vs followership venn diagram - Leading and Managing Work Teams - Introduction to java programming and data structures 11th edition pdf - Domestic Violence Statistics - Week 5 paper 5 - Tribol gr 100-2 pd equivalent in shell - Fallon company uses flexible budgets to control its selling expenses - Healthcare Financial Management and Decision Making - Hornady pacific powder bushing chart - Quilcene oysteria farms and sells oysters in the pacific - Introduction to programming using visual basic 2012 - Electrical certificate of verification - Law & Ethics in the Business Environment - Positively skewed qq plot - Statement of purpose for global business management