Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Separation of the components of a mixture lab report

15/10/2021 Client: muhammad11 Deadline: 2 Day

Separation Of A Mixture Lab Report Sheet

CHEM 1411 Alternate Separation of a Mixture Lab
Objectives:
1. To understand different physical separation techniques

2. To separate the components of a mixture of sand (SiO2), table salt (NaCl) and ammonium chloride (NH4Cl), using various separation techniques

3. To determine the percent composition of each component

4. To determine the percent recovery of the total mixture

Materials:
· 2 g unknown sample

· Small evaporating dish

· Large evaporating dish

· Watch glass

· Bunsen burner

· Balance

· Clay triangle

· Clay square

· Glass stirring rod

· Evaporating dish tongs

Introduction:
Matter can be generally classified either by state (liquid, gas, or solid) or by composition. In terms of composition, there are two types of matter: pure substances and mixtures. A pure substance is matter that has a fixed composition and distinct properties. Elements or compounds are pure substances (e.g. water, helium.) On the other hand, a mixture is matter that consists of two or more pure substances physically combined in varying amounts (e.g. salt water). There are two types of mixtures: homogeneous and heterogeneous mixtures. Whereas a homogeneous mixture is uniform throughout, the components of a heterogeneous mixture vary throughout and can be distinguished. For instance, granite (a type of rock) is a heterogeneous mixture.

Regardless of the type of mixture, the components of a mixture can always be separated by physical means. Some examples of physical methods of separation are defined below.

Decantation is the rough separation of a liquid from a solid. It consists of pouring the liquid out and leaving the solid in the container. No filter paper is needed in this process. As an example, sand and water can be separated by decantation.

Filtration is the fine separation of a solid material from a liquid with the help of filter paper and a funnel or other porous membrane. In this process, the solid or residue is collected on a filter paper. The liquid that passes through the filter paper is called the filtrate.

Extraction involves using a solvent to dissolve only one component of a mixture so that it can be removed from the other component(s). For example, if only one solid is soluble in water, extraction could be used to dissolve that component and then the aqueous solution can be removed from the mixture by decantation or filtration.

Distillation is a separation technique that uses the different boiling points of liquids. It consists of vaporizing a liquid substance out of a mixture of two or more liquids and condensing it into a separate container using a condenser. For example, alcohol can be separated from water in an aqueous solution by distillation because the alcohol has a lower boiling point than water.

Sublimation is the direct phase change from solid to gas. Ammonium chloride sublimates when heated. This means it can be directly converted to gas by heating.

Evaporation can be used to separate a liquid from a dissolved solid. The dissolved solid will have a higher boiling point than the liquid in the mixture. Therefore heating the solution until all of the liquid has vaporized will leave behind the solid in the bottom of the container.

In this experiment, you will use various separation techniques to separate the components of a heterogeneous mixture. Ammonium chloride sublimes when heated. This means it can be directly converted to gas by heating. This property will be used to separate it from sand and salt in the mixture. Once the ammonium chloride is removed, water is added to the remaining sample to extract NaCl. The resulting aqueous mixture is then decanted to separate the aqueous salt solution from the sand. Finally, the water is driven off from the salt solution and the wet sand.

The primary goal of the experiment is to determine the composition of the original mixture. The ratio of components in a mixture is described by the mass percent composition of each component. For example, a solution of sugar water might be 5% sugar and 95% water or it could be 40 % sugar and 60% water. The method for calculating percent composition is given in the section on calculations.

In addition to the composition of the mixture, it is also valuable to know how much material is lost during the processes used to separate the components. Some material will always be lost. However, significant losses are due to the use of poor lab technique. The ratio of the total mass of all the materials collected (after separation) to the mass of the original mixture gives the percent recovery. A percent recovery of greater than 100% indicates that some contamination remains in the sample. In this experiment, this contamination is water and can be removed by further heating. During an experiment it is important to make careful observations. Note anything unusual that occurs that may be a source of error in the lab.

Procedure:
Part I: Separation of Ammonium Chloride
1. Obtain a clean, dry small evaporating dish from your tray.Weigh it and record its mass to the proper number of sig figs.

2. Place about 2 g of the unknown mixture in the evaporating dish.

3. Weigh the evaporating dish and the sample together and record the mass to the proper number of sig figs.

4. Set up a Bunsen burner under the hood.

Note : The next steps are to be done in the HOOD.

5. Place the small evaporating dish with the sample on a stand over the burner. Do NOT cover the dish.

6. Heat gently for ten minutes.

7. Turn off the flame.

8. Carefully move the dish to a clay square and gently stir the sample with a stirring rod.

9. Relight the Bunsen burner and heat gently again for another twenty minutes. Ocassionally stir the contents with the stirring rod to help the ammonium chloride to sublimate.

10. Stop heating when no more white fumes are observed.

11. Allow the small evaporating dish and contents to cool to room temperature. Never weigh a hot object.

Lab Technique Tip: Hot containers such as glass beakers and ceramic evaporating dishes can crack if they cool down too quickly. Wire gauze or a clay square or ceramic tile will dissipate heat more slowly than the counter top and prevent the container from breaking.

12. Weigh the cooled dish, record its mass.

Part II: Extraction of Salt from Sand
1. Add 25 mL of deionized water to the contents of the smaller evaporating dish.

2. Stir the mixture gently with a stirring rod for five to ten minutes so that all of the salt dissolves.

3. Obtain a large evaporating dish from the lab cart.

4. Weigh the large evaporating dish and a watch glass together, record the mass in Part III of the lab report.

5. Carefully decant the liquid into the empty large evaporating dish. DO NOT TRANSFER ANY SOLID MATERIAL!

6. Wash the sand by repeating steps 1 - 2 this time using 5 mL portions of deionized water. Do this two or three times to extract all of the NaCl away from the sand.

7. Save the salt solution in the large evaporating dish for Part III.

8. The small evaporating dish should now contain only wet sand. Gently heat to evaporate the water left after decantation. Continue heating until the sand is dry. If the mixture gets too hot so that the contents spatter take it off the burner. Continue this cycle until the sand is dry. It may take a while.

9. Allow the dry evaporating dish and sand to cool to room temperature. While this is cooling, move to Part III.

10. When cool, weigh the evaporating dish and sand, record the mass.

Part III: Recovery of NaCl
1. Cover the large evaporating dish with the watch glass.

2. Gently heat the large evaporating dish with the watch glass cover in place to vaporize the water. Avoid spattering, see lab technique tip below. Carefully watch the salt for bubbling, popping or spattering.

Lab Technique Tip: Covering the evaporating dish with a watch glass allows air and steam to escape, but prevents the salt solution from spattering out when the solution boils. It also prevents the solid from popping out as the solution becomes completely dry.

3. Heat gently until dryness.

4. Once all water has evaporated, cool to room temperature and weigh, record the mass.

WASTE DISPOSAL: The sand can be disposed in the regular trash. The salt can be washed down the sink.

Calculations:
· mass of ammonium chloride = (mass of small evaporating dish with original sample) – (mass of small evaporating dish with sample after removing ammonium chloride)

· mass of sand = (mass of small evaporating dish with sample of dry sand) – (mass of empty small evaporating dish)

· mass of NaCl = (mass of large evaporating dish with watch glass and dry NaCl) – (mass of large evaporating dish with watch glass)

·

Sample Problem:

When a 2.00 g mixture of SiO2, NH4Cl, and NaCl was analyzed, the respective masses of SiO2, NH4Cl, and NaCl were 1.30 g, 0.50 g, and 0.16 g.

a. Calculate the percentage of each component.

b. Calculate the combined percentage (i.e. percent recovery)

Part a: Percentage of each component

Note : Always be mindful of the correct number of sig figs with calculations.

Part b: Percent Recovery

Total % = 65.0% + 25% + 8.0% = 98% of the mixture was recovered

Lab Technique Tip: The purpose of showing calculations in science is to record your method, not just your results. When showing your work for chemistry calculations, record the formula that you used and the units and chemical formulas in addition to the numbers and the math.

Separation of a Mixture Lab Report Sheet
Name

Date

Quiz

/ 20

Report

/ 80

Total

/ 100

Part I: Separation of Ammonium Chloride
Mass of small evaporating dish

41.621 g

Mass of small evaporating dish with sample

43.642 g

Mass of original sample

g

Mass of small evaporating dish after removing ammonium chloride

43.437 g

Mass of ammonium chloride

g

Percent of ammonium chloride (show calculations)

%

Part II: Extraction of Salt From Sand
Mass of small evaporating dish

41.621 g

Mass of small evaporating dish with dry sand

42.928 g

Mass of sand

g

Percent of sand in sample (show calculations)

%

Part III: Recovery of NaCl
Mass of large evaporating dish with watch glass

149.018 g

Mass of large evaporating dish with watch glass and salt after heating

149.436 g

Mass of NaCl

g

Percent of NaCl (show calculations)

%

Results:
Add all of the percents together to determine the percent recovery (show your work). Explain any variation from a total of 100%.

Conclusion:

Questions:

1. Fill in the following blanks.

· Two methods of separating an undissolved solid from a liquid are ________________ and ________________

· The method for separating a dissolved solid from the water in an aqueous solution is _______________

· Using a solvent to dissolve only one substance in a mixture is called ______________.

2. A mixture can consist of two or more pure substances. Does that mean a mixture can only consist of elements?

3. Explain your answer to question number 2.

4. Oil and water mixed together form a heterogenous or homogenous mixture?

5. 2.000 g of the unknown mixture was placed in an evaporating dish. The empty evaporating dish weighs 38.135 g. After subliming the ammonium chloride from the mixture, the evaporating dish and the remaining mixture weighs 39.775 g. (Put your answer in 3 sig figs and show your work)

· What is the weight of the ammonium chloride?

· What is the percent of ammonium chloride in the sample?

Dallas College CHEM 1411 Alternate Separation of a Mixture Lab p. May 2021

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Isabella K.
Quality Homework Helper
Supreme Essay Writer
Accounting & Finance Specialist
Math Exam Success
Coursework Helper
Writer Writer Name Offer Chat
Isabella K.

ONLINE

Isabella K.

I have worked on wide variety of research papers including; Analytical research paper, Argumentative research paper, Interpretative research, experimental research etc.

$38 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$20 Chat With Writer
Supreme Essay Writer

ONLINE

Supreme Essay Writer

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$48 Chat With Writer
Accounting & Finance Specialist

ONLINE

Accounting & Finance Specialist

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$44 Chat With Writer
Math Exam Success

ONLINE

Math Exam Success

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$23 Chat With Writer
Coursework Helper

ONLINE

Coursework Helper

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$18 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Week 7 Discussion - Orality and literacy summary - 2303 vardon lane sanctuary cove - Fastenal self tapping screws - What is anecdotal observation - Andys auto rentals tweed heads - Math - Villanova six sigma program - Paper - Palm beach state bookstore - Discussion - Theorem 10.10 class 9 - Nhtv breda university of applied sciences - Implications of product life cycle stages - Skills lab 2 PowerPoint week 4 - Stony brook greek life - Job application form template doc - Angle of elevation and depression worksheet - Daimler chrysler merger case study answers - Best practice performance management systems - Chcece003 assessment answer - The book thief historical accuracy - Solving equations with pronumerals on both sides worksheets - HW - Amir obe net worth - Why is leadership a fundamental part of organizational behavior - Optimize in a sentence - Fila brasileiro breeders australia - Food chains and food webs worksheet answers - The production manager of rordan corporation has submitted - Comparative essay outline example - Nutricalc plus program - Module 5 - Periodical Report 5 - Exam lesson name writing exam number 700139 - Engineering double degree curtin - Alkalinity of water sample - Wireshark capture filter exclude ip address - Cheltenham hospital eye clinic - Antonio vivaldi the four seasons spring - Financial reporting loftus 2nd edition - Theories in Social work - Cigweld transmig 190 manual - Aristotle nicomachean ethics irwin pdf - Mean green mildew destroyer lowes - William wallace primary sources - Greg lynn folding in architecture - 12 angry men important quotes - Promoting trust in the registered nurse-patient relationship - Pink puffers blue bloaters - Dunkin annual report - Sat test 8 scoring - Discussion: American citizenship test and reflection - Essary enterprises has bonds on the market - Look at all these lonely people - Assignment - Excel chapter 4 capstone exercise - Hkdse sample paper maths - Public and private families an introduction 7th edition pdf - Discussion part - Mary t barra disney board of directors - 230 bus route map - Network Security Controls Recommendations - Research paper - How to make a survivorship curve on excel - Writing solid code 20th anniversary 2nd edition pdf - Compare and contrast brainstorming - Nasa acoustic test chamber - The process of recruiting and retaining capable employees - Discussion - Sociological Imagination Pre-Writing Map - 6.1 Reading Reflection - Old mutual wealth chester - Isolation of caffeine from tea leaves lab report - Week 4 Discussion - What word means hardening of the artery - The compassion experience miami - Oracle reports parameter form - Rovide - Examples of perception checking statements - Shadow health neurological assessment subjective data - Powerpoint - Response the questions - Causes of congressional gridlock - Lincoln and guba 1985 naturalistic inquiry ebook - 1 2 switch bodies - Homework - Hb 167 2006 security risk management - Identity in wide sargasso sea - Closed loop mrp system - Ops 571 operations consulting powerpoint - Commonwealth bank of australia abn - Ephesians 1 15 23 nkjv - Stamford park infant school - 55mm ring size uk - Iron jawed angels will the circle be unbroken lyrics - How to write a persuasive memo examples - Marketing communication and brand strategy mkt 571 - Cyber domain parts - Grading activities in occupational therapy - Sir william romney school