Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Skew factor of a table in teradata

16/11/2021 Client: muhammad11 Deadline: 2 Day

BUSINESS INTELLIGENCE AND ANALYTICS

RAMESH SHARDA

DURSUN DELEN

EFRAIM TURBAN

TENTH EDITION

.•

TENTH EDITION

BUSINESS INTELLIGENCE

AND ANALYTICS:

SYSTEMS FOR DECISION SUPPORT

Ramesh Sharda

Oklahoma State University

Dursun Delen

Oklahoma State University

Efraim Turban

University of Hawaii

With contributions by

J.E.Aronson

Tbe University of Georgia

Ting-Peng Liang

National Sun Yat-sen University

David King

]DA Software Group, Inc.

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief: Stephanie Wall Executive Editor: Bob Horan Program Manager Team Lead: Ashley Santora Program Manager: Denise Vaughn Executive Marketing Manager: Anne Fahlgren Project Manager Team Lead: Judy Leale Project Manager: Tom Benfatti Operations Specialist: Michelle Klein Creative Director: Jayne Conte

Cover Designer: Suzanne Behnke Digital Production Project Manager: Lisa

Rinaldi Full-Service Project Management: George Jacob,

Integra Software Solutions. Printer/Binder: Edwards Brothers Malloy-Jackson

Road Cover Printer: Lehigh/Phoenix-Hagerstown Text Font: Garamond

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Microsoft and/ or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/ or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright© 2015, 2011, 2007 by Pearson Education, Inc., One Lake Street, Upper Saddle River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Turban, Efraim. [Decision support and expert system,) Business intelligence and analytics: systems for decision support/Ramesh Sharda, Oklahoma State University,

Dursun Delen, Oklahoma State University, Efraim Turban, University of Hawaii; With contributions by J. E. Aronson, The University of Georgia, Ting-Peng Liang, National Sun Yat-sen University, David King, JOA Software Group, Inc.-Tenth edition.

pages cm ISBN-13: 978-0-13-305090-5 ISBN-10: 0-13-305090-4 1. Management-Data processing. 2. Decision support systems. 3. Expert systems (Computer science)

4. Business intelligence. I. Title. HD30.2.T87 2014 658.4'03801 l-dc23

10 9 8 7 6 5 4 3 2 1

PEARSON

2013028826

ISBN 10: 0-13-305090-4 ISBN 13: 978-0-13-305090-5

BRIEF CONTENTS

Preface xxi

About the Authors xxix

PART I Decision Making and Analytics: An Overview 1 Chapter 1 An Overview of Business Intelligence, Analytics,

and Decision Support 2

Chapter 2 Foundations and Technologies for Decision Making 37

PART II Descriptive Analytics 77

Chapter 3 Data Warehousing 78

Chapter 4 Business Reporting, Visual Analytics, and Business Performance Management 135

PART Ill Predictive Analytics 185

Chapter 5 Data Mining 186

Chapter 6 Techniques for Predictive Modeling 243

Chapter 7 Text Analytics, Text Mining, and Sentiment Analysis 288

Chapter 8 Web Analytics, Web Mining, and Social Analytics 338

PART IV Prescriptive Analytics 391

Chapter 9 Model-Based Decision Making: Optimization and Multi- Criteria Systems 392

Chapter 10 Modeling and Analysis: Heuristic Search Methods and Simulation 435

Chapter 11 Automated Decision Systems and Expert Systems 469

Chapter 12 Knowledge Management and Collaborative Systems 507

PART V Big Data and Future Directions for Business Analytics 541

Chapter 13 Big Data and Analytics 542

Chapter 14 Business Analytics: Emerging Trends and Future Impacts 592

Glossary 634

Index 648

iii

iv

CONTENTS

Preface xxi

About the Authors xxix

Part I Decision Making and Analytics: An Overview 1

Chapter 1 An Overview of Business Intelligence, Analytics, and Decision Support 2

1.1 Opening Vignette: Magpie Sensing Employs Analytics to Manage a Vaccine Supply Chain Effectively and Safely 3

1.2 Changing Business Environments and Computerized Decision Support 5

The Business Pressures-Responses-Support Model 5

1.3 Managerial Decision Making 7

The Nature of Managers' Work 7

The Decision-Making Process 8

1.4 Information Systems Support for Decision Making 9

1.5 An Early Framework for Computerized Decision Support 11

The Gorry and Scott-Morton Classical Framework 11

Computer Support for Structured Decisions 12

Computer Support for Unstructured Decisions 13

Computer Support for Semistructured Problems 13

1.6 The Concept of Decision Support Systems (DSS) 13

DSS as an Umbrella Term 13

Evolution of DSS into Business Intelligence 14

1.7 A Framework for Business Intelligence (Bl) 14

Definitions of Bl 14

A Brief History of Bl 14

The Architecture of Bl 15

Styles of Bl 15

The Origins and Drivers of Bl 16

A Multimedia Exercise in Business Intelligence 16 ~ APPLICATION CASE 1.1 Sabre Helps Its Clients Through Dashboards

and Analytics 17

The DSS-BI Connection 18

1.8 Business Analytics Overview 19

Descriptive Analytics 20

~ APPLICATION CASE 1.2 Eliminating Inefficiencies at Seattle Children's Hospital 21

~ APPLICATION CASE 1.3 Analysis at the Speed of Thought 22

Predictive Analytics 22

~ APPLICATION CASE 1.4 Moneybal/: Analytics in Sports and Movies 23

~ APPLICATION CASE 1.5 Analyzing Athletic Injuries 24

Prescriptive Analytics 24

~ APPLICATION CASE 1.6 Industrial and Commercial Bank of China (ICBC) Employs Models to Reconfigure Its Branch Network 25

Analytics Applied to Different Domains 26

Analytics or Data Science? 26

1.9 Brief Introduction to Big Data Analytics 27

What Is Big Data? 27 ~ APPLICATION CASE 1.7 Gilt Groupe's Flash Sales Streamlined by Big

Data Analytics 29

1.10 Plan of the Book 29 Part I: Business Analytics: An Overview 29

Part II: Descriptive Analytics 30

Part Ill: Predictive Analytics 30

Part IV: Prescriptive Analytics 31

Part V: Big Data and Future Directions for Business Analytics 31

1.11 Resources, Links, and the Teradata University Network Connection 31

Resources and Links 31

Vendors, Products, and Demos 31

Periodicals 31

The Teradata University Network Connection 32

The Book's Web Site 32 Chapter Highlights 32 • Key Terms 33

Questions for Discussion 33 • Exercises 33

~ END-OF-CHAPTER APPLICATION CASE Nationwide Insurance Used Bl to Enhance Customer Service 34

References 35

Chapter 2 Foundations and Technologies for Decision Making 37 2.1 Opening Vignette: Decision Modeling at HP Using

Spreadsheets 38

2.2 Decision Making: Introduction and Definitions 40

Characteristics of Decision Making 40

A Working Definition of Decision Making 41

Decision-Making Disciplines 41

Decision Style and Decision Makers 41

2.3 Phases of the Decision-Making Process 42

2.4 Decision Making: The Intelligence Phase 44 Problem (or Opportunity) Identification 45 ~ APPLICATION CASE 2.1 Making Elevators Go Faster! 45

Problem Classification 46

Problem Decomposition 46

Problem Ownership 46

Conte nts v

vi Contents

2.5 Decision Making: The Design Phase 47 Models 47

Mathematical (Quantitative) Models 47

The Benefits of Models 4 7

Selection of a Principle of Choice 48

Normative Models 49

Suboptimization 49

Descriptive Models 50

Good Enough, or Satisficing 51

Developing (Generating) Alternatives 52

Measuring Outcomes 53

Risk 53

Scenarios 54

Possible Scenarios 54

Errors in Decision Making 54

2.6 Decision Making: The Choice Phase 55 2.7 Decision Making: The Implementation Phase 55

2.8 How Decisions Are Supported 56 Support for the Intelligence Phase 56

Support for the Design Phase 5 7

Support for the Choice Phase 58

Support for the Implementation Phase 58

2.9 Decision Support Systems: Capabilities 59

A DSS Application 59

2.10 DSS Classifications 61

The AIS SIGDSS Classification for DSS 61

Other DSS Categories 63

Custom-Made Systems Versus Ready-Made Systems 63

2.11 Components of Decision Support Systems 64

The Data Management Subsystem 65

The Model Management Subsystem 65 ~ APPLICATION CASE 2.2 Station Casinos Wins by Building Customer

Relationships Using Its Data 66

~ APPLICATION CASE 2.3 SNAP DSS Helps OneNet Make Telecommunications Rate Decisions 68

The User Interface Subsystem 68

The Knowledge-Based Management Subsystem 69 ~ APPLICATION CASE 2.4 From a Game Winner to a Doctor! 70

Chapter Highlights 72 • Key Terms 73

Questions for Discussion 73 • Exercises 74

~ END-OF-CHAPTER APPLICATION CASE Logistics Optimization in a Major Shipping Company (CSAV) 74

References 75

Part II Descriptive Analytics 77

Chapter 3 Data Warehousing 78 3.1 Opening Vignette: Isle of Capri Casinos Is Winning with

Enterprise Data Warehouse 79

3.2 Data Warehousing Definitions and Concepts 81

What Is a Data Warehouse? 81

A Historical Perspective to Data Warehousing 81

Characteristics of Data Warehousing 83

Data Marts 84

Operational Data Stores 84

Enterprise Data Warehouses (EDW) 85

Metadata 85 ~ APPLICATION CASE 3.1 A Better Data Plan: Well-Established TELCOs

Leverage Data Warehousing and Analytics to Stay on Top in a Competitive Industry 85

3.3 Data Warehousing Process Overview 87 ~ APPLICATION CASE 3.2 Data Warehousing Helps MultiCare Save

More Lives 88

3.4 Data Warehousing Architectures 90

Alternative Data Warehousing Architectures 93

Which Architecture Is the Best? 96

3.5 Data Integration and the Extraction, Transformation, and Load (ETL) Processes 97

Data Integration 98 ~ APPLICATION CASE 3.3 BP Lubricants Achieves BIGS Success 98

Extraction, Transfonnation, and Load 100

3.6 Data Warehouse Development 102 ~ APPLICATION CASE 3.4 Things Go Better with Coke's Data

Warehouse 103

Data Warehouse Development Approaches 103 ~ APPLICATION CASE 3.5 Starwood Hotels & Resorts Manages Hotel

Profitability with Data Warehousing 106

Additional Data Warehouse Development Considerations 107

Representation of Data in Data Warehouse 108

Analysis of Data in the Data Warehouse 109

OLAP Versus OLTP 110

OLAP Operations 11 0

3.7 Data Warehousing Implementation Issues 113 ~ APPLICATION CASE 3.6 EDW Helps Connect State Agencies in

Michigan 115

Massive Data Warehouses and Scalability 116

3.8 Real-Time Data Warehousing 117 ~ APPLICATION CASE 3.7 Egg Pie Fries the Competition in Near Real

Time 118

Conte nts vii

viii Contents

3.9 Data Warehouse Administration, Security Issues, and Future Trends 121

The Future of Data Warehousing 123

3.10 Resources, Links, and the Teradata University Network Connection 126

Resources and Links 126

Cases 126

Vendors, Products, and Demos 127

Periodicals 127

Additional References 127

The Teradata University Network (TUN) Connection 127

Chapter Highlights 128 • Key Terms 128

Questions for Discussion 128 • Exercises 129

.... END-OF-CHAPTER APPLICATION CASE Continental Airlines Flies High with Its Real-Time Data Warehouse 131

References 132

Chapter 4 Business Reporting, Visual Analytics, and Business Performance Management 135

4.1 Opening Vignette:Self-Service Reporting Environment Saves Millions for Corporate Customers 136

4.2 Business Reporting Definitions and Concepts 139

What Is a Business Report? 140 ..,. APPLICATION CASE 4.1 Delta Lloyd Group Ensures Accuracy and

Efficiency in Financial Reporting 141

Components of the Business Reporting System 143

.... APPLICATION CASE 4.2 Flood of Paper Ends at FEMA 144

4.3 Data and Information Visualization 145 ..,. APPLICATION CASE 4.3 Tableau Saves Blastrac Thousands of Dollars

with Simplified Information Sharing 146

A Brief History of Data Visualization 147 .... APPLICATION CASE 4.4 TIBCO Spotfire Provides Dana-Farber Cancer

Institute with Unprecedented Insight into Cancer Vaccine Clinical Trials 149

4.4 Different Types of Charts and Graphs 150

Basic Charts and Graphs 150

Specialized Charts and Graphs 151

4.5 The Emergence of Data Visualization and Visual Analytics 154

Visual Analytics 156

High-Powered Visual Analytics Environments 158

4.6 Performance Dashboards 160 .... APPLICATION CASE 4.5 Dallas Cowboys Score Big with Tableau and

Teknion 161

Dashboard Design 162

~ APPLICATION CASE 4.6 Saudi Telecom Company Excels with Information Visualization 163

What to Look For in a Dashboard 164

Best Practices in Dashboard Design 165

Benchmark Key Performance Indicators with Industry Standards 165

Wrap the Dashboard Metrics with Contextual Metadata 165

Validate the Dashboard Design by a Usability Specialist 165

Prioritize and Rank Alerts/Exceptions Streamed to the Dashboard 165

Enrich Dashboard with Business Users' Comments 165

Present Information in Three Different Levels 166

Pick the Right Visual Construct Using Dashboard Design Principles 166

Provide for Guided Analytics 166

4.7 Business Performance Management 166

Closed-Loop BPM Cycle 167

~ APPLICATION CASE 4.7 IBM Cognos Express Helps Mace for Faster and Better Business Reporting 169

4.8 Performance Measurement 170

Key Performance Indicator (KPI) 171

Performance Measurement System 172

4.9 Balanced Scorecards 172

The Four Perspectives 173

The Meaning of Balance in BSC 17 4

Dashboards Versus Scorecards 174

4.10 Six Sigma as a Performance Measurement System 175

The DMAIC Performance Model 176

Balanced Scorecard Versus Six Sigma 176

Effective Performance Measurement 1 77

~ APPLICATION CASE 4.8 Expedia.com's Customer Satisfaction Scorecard 178

Chapter Highlights 179 • Key Terms 180

Questions for Discussion 181 • Exercises 181

~ END-OF-CHAPTER APPLICATION CASE Smart Business Reporting Helps Healthcare Providers Deliver Better Care 182

References 184

Part Ill Predictive Analytics 185

Chapter 5 Data Mining 186 5.1 Opening Vignette: Cabela's Reels in More Customers with

Advanced Analytics and Data Mining 187

5.2 Data Mining Concepts and Applications 189 ~ APPLICATION CASE 5.1 Smarter Insurance: Infinity P&C Improves

Customer Service and Combats Fraud with Predictive Analytics 191

Conte nts ix

x Contents

Definitions, Characteristics, and Benefits 192 ..,. APPLICATION CASE 5.2 Harnessing Analytics to Combat Crime:

Predictive Analytics Helps Memphis Police Department Pinpoint Crime and Focus Police Resources 196

How Data Mining Works 197 Data Mining Versus Statistics 200

5.3 Data Mining Applications 201 .... APPLICATION CASE 5.3 A Mine on Terrorist Funding 203

5.4 Data Mining Process 204

Step 1: Business Understanding 205

Step 2: Data Understanding 205

Step 3: Data Preparation 206

Step 4: Model Building 208 .... APPLICATION CASE 5.4 Data Mining in Cancer Research 210

Step 5: Testing and Evaluation 211

Step 6: Deployment 211

Other Data Mining Standardized Processes and Methodologies 212

5.5 Data Mining Methods 214

Classification 214

Estimating the True Accuracy of Classification Models 215

Cluster Analysis for Data Mining 220 ..,. APPLICATION CASE 5.5 2degrees Gets a 1275 Percent Boost in Churn

Identification 221

Association Rule Mining 224

5.6 Data Mining Software Tools 228 .... APPLICATION CASE 5.6 Data Mining Goes to Hollywood: Predicting

Financial Success of Movies 231

5.7 Data Mining Privacy Issues, Myths, and Blunders 234

Data Mining and Privacy Issues 234 .... APPLICATION CASE 5.7 Predicting Customer Buying Patterns-The

Target Story 235

Data Mining Myths and Blunders 236 Chapter Highlights 237 • Key Terms 238

Questions for Discussion 238 • Exercises 239

.... END-OF-CHAPTER APPLICATION CASE Macys.com Enhances Its Customers' Shopping Experience with Analytics 241

References 241

Chapter 6 Techniques for Predictive Modeling 243 6.1 Opening Vignette: Predictive Modeling Helps Better

Understand and Manage Complex Medical Procedures 244

6.2 Basic Concepts of Neural Networks 247 Biological and Artificial Neural Networks 248 ..,. APPLICATION CASE 6.1 Neural Networks Are Helping to Save Lives in

the Mining Industry 250

Elements of ANN 251

Network Information Processing 2 52

Neural Network Architectures 254 ~ APPLICATION CASE 6.2 Predictive Modeling Is Powering the Power

Generators 256

6.3 Developing Neural Network-Based Systems 258

The General ANN Learning Process 259

Backpropagation 260

6.4 Illuminating the Black Box of ANN with Sensitivity Analysis 262 ~ APPLICATION CASE 6.3 Sensitivity Analysis Reveals Injury Severity

Factors in Traffic Accidents 264

6.5 Support Vector Machines 265 ~ APPLICATION CASE 6.4 Managing Student Retention with Predictive

Modeling 266

Mathematical Formulation of SVMs 270

Primal Form 271

Dual Form 271

Soft Margin 271

Nonlinear Classification 272

Kernel Trick 272

6.6 A Process-Based Approach to the Use of SVM 273 Support Vector Machines Versus Artificial Neural Networks 274

6.7 Nearest Neighbor Method for Prediction 275 Similarity Measure: The Distance Metric 276

Parameter Selection 277 ~ APPLICATION CASE 6.5 Efficient Image Recognition and

Categorization with kNN 278

Chapter Highlights 280 • Key Terms 280

Questions for Discussion 281 • Exercises 281

~ END-OF-CHAPTER APPLICATION CASE Coors Improves Beer Flavors with Neural Networks 284

References 285

Chapter 7 Text Analytics, Text Mining, and Sentiment Analysis 288 7.1 Opening Vignette: Machine Versus Men on Jeopardy!: The

Story of Watson 289

7.2 Text Analytics and Text Mining Concepts and Definitions 291 ~ APPLICATION CASE 7.1 Text Mining for Patent Analysis 295

7.3 Natural Language Processing 296 ~ APPLICATION CASE 7.2 Text Mining Improves Hong Kong

Government's Ability to Anticipate and Address Public Complaints 298

7.4 Text Mining Applications 300

Marketing Applications 301

Security Applications 301 ~ APPLICATION CASE 7.3 Mining for Lies 302

Biomedical Applications 304

Conte nts xi

xii Contents

Academic Applications 305 .... APPLICATION CASE 7.4 Text Mining and Sentiment Analysis Help

Improve Customer Service Performance 306

7.5 Text Mining Process 307

Task 1: Establish the Corpus 308

Task 2: Create the Term-Document Matrix 309

Task 3: Extract the Knowledge 312 ..,. APPLICATION CASE 7.5 Research Literature Survey with Text

Mining 314

7.6 Text Mining Tools 317

Commercial Software Tools 317

Free Software Tools 317 ..,. APPLICATION CASE 7.6 A Potpourri ofText Mining Case Synopses 318

7.7 Sentiment Analysis Overview 319 ..,. APPLICATION CASE 7.7 Whirlpool Achieves Customer Loyalty and

Product Success with Text Analytics 321

7.8 Sentiment Analysis Applications 323

7.9 Sentiment Analysis Process 325

Methods for Polarity Identification 326

Using a Lexicon 327

Using a Collection of Training Documents 328

Identifying Semantic Orientation of Sentences and Phrases 328

Identifying Semantic Orientation of Document 328

7.10 Sentiment Analysis and Speech Analytics 329

How Is It Done? 329 ..,. APPLICATION CASE 7.8 Cutting Through the Confusion: Blue Cross

Blue Shield of North Carolina Uses Nexidia's Speech Analytics to Ease Member Experience in Healthcare 331

Chapter Highlights 333 • Key Terms 333

Questions for Discussion 334 • Exercises 334

.... END-OF-CHAPTER APPLICATION CASE BBVA Seamlessly Monitors and Improves Its Online Reputation 335

References 336

Chapter 8 Web Analytics, Web Mining, and Social Analytics 338 8.1 Opening Vignette: Security First Insurance Deepens

Connection with Policyholders 339

8.2 Web Mining Overview 341

8.3 Web Content and Web Structure Mining 344 .... APPLICATION CASE 8.1 Identifying Extremist Groups with Web Link

and Content Analysis 346

8.4 Search Engines 347 Anatomy of a Search Engine 347

1. Development Cycle 348

Web Crawler 348

Document Indexer 348

2. Response Cycle 349

Query Analyzer 349

Document Matcher/Ranker 349

How Does Google Do It? 351 ~ APPLICATION CASE 8.2 IGN Increases Search Traffic by 1500 Percent 353

8.5 Search Engine Optimization 354

Methods for Search Engine Optimization 355 ~ APPLICATION CASE 8.3 Understanding Why Customers Abandon

Shopping Carts Results in $10 Million Sales Increase 357

8.6 Web Usage Mining (Web Analytics) 358

Web Analytics Technologies 359 ~ APPLICATION CASE 8.4 Allegro Boosts Online Click-Through Rates by

500 Percent with Web Analysis 360

Web Analytics Metrics 362

Web Site Usability 362

Traffic Sources 363

Visitor Profiles 364

Conversion Statistics 364

8.7 Web Analytics Maturity Model and Web Analytics Tools 366

Web Analytics Tools 368

Putting It All Together-A Web Site Optimization Ecosystem 370

A Framework for Voice of the Customer Strategy 372

8.8 Social Analytics and Social Network Analysis 373

Social Network Analysis 374

Social Network Analysis Metrics 375 ~ APPLICATION CASE 8.5 Social Network Analysis Helps

Telecommunication Firms 375

Connections 376

Distributions 376

Segmentation 377

8.9 Social Media Definitions and Concepts 377

How Do People Use Social Media? 378 ~ APPLICATION CASE 8.6 Measuring the Impact of Social Media at

Lollapalooza 379

8.10 Social Media Analytics 380

Measuring the Social Media Impact 381

Best Practices in Social Media Analytics 381 ~ APPLICATION CASE 8.7 eHarmony Uses Social Media to Help Take the

Mystery Out of Online Dating 383

Social Media Analytics Tools and Vendors 384 Chapter Highlights 386 • Key Terms 387

Questions for Discussion 387 • Exercises 388

~ END-OF-CHAPTER APPLICATION CASE Keeping Students on Track with Web and Predictive Analytics 388

References 390

Conte nts xiii

xiv Contents

Part IV Prescriptive Analytics 391

Chapter 9 Model-Based Decision Making: Optimization and Multi-Criteria Systems 392

9.1 Opening Vignette: Midwest ISO Saves Billions by Better Planning of Power Plant Operations and Capacity Planning 393

9.2 Decision Support Systems Modeling 394 ~ APPLICATION CASE 9.1 Optimal Transport for ExxonMobil

Downstream Through a DSS 395

Current Modeling Issues 396 ~ APPLICATION CASE 9.2 Forecasting/Predictive Analytics Proves to Be

a Good Gamble for Harrah's Cherokee Casino and Hotel 397

9.3 Structure of Mathematical Models for Decision Support 399 The Components of Decision Support Mathematical Models 399

The Structure of Mathematical Models 401

9.4 Certainty, Uncertainty, and Risk 401

Decision Making Under Certainty 402

Decision Making Under Uncertainty 402 Decision Making Under Risk (Risk Analysis) 402 ~ APPLICATION CASE 9.3 American Airlines Uses

Should-Cost Modeling to Assess the Uncertainty of Bids for Shipment Routes 403

9.5 Decision Modeling with Spreadsheets 404 ~ APPLICATION CASE 9.4 Showcase Scheduling at Fred Astaire East

Side Dance Studio 404

9.6 Mathematical Programming Optimization 407 ~ APPLICATION CASE 9.5 Spreadsheet Model Helps Assign Medical

Residents 407

Mathematical Programming 408

Linear Programming 408 Modeling in LP: An Example 409

Implementation 414

9.7 Multiple Goals, Sensitivity Analysis, What-If Analysis, and Goal Seeking 416

Multiple Goals 416 Sensitivity Analysis 417

What-If Analysis 418

Goal Seeking 418

9.8 Decision Analysis with Decision Tables and Decision Trees 420

Decision Tables 420

Decision Trees 422

9.9 Multi-Criteria Decision Making With Pairwise Comparisons 423

The Analytic Hierarchy Process 423

~ APPLICATION CASE 9.6 U.S. HUD Saves the House by Using AHP for Selecting IT Projects 423

Tutorial on Applying Analytic Hierarchy Process Using Web-HIPRE 425 Chapter Highlights 429 • Key Terms 430

Questions for Discussion 430 • Exercises 430 ~ END-OF-CHAPTER APPLICATION CASE Pre-Positioning of Emergency

Items for CARE International 433 References 434

Chapter 10 Modeling and Analysis: Heuristic Search Methods and Simulation 435 10.1 Opening Vignette: System Dynamics Allows Fluor

Corporation to Better Plan for Project and Change Management 436

10.2 Problem-Solving Search Methods 437 Analytical Techniques 438

Algorithms 438

Blind Searching 439

Heuristic Searching 439 ~ APPLICATION CASE 10.1 Chilean Government Uses Heuristics to

Make Decisions on School Lunch Providers 439

10.3 Genetic Algorithms and Developing GA Applications 441 Example: The Vector Game 441

Terminology of Genetic Algorithms 443

How Do Genetic Algorithms Work? 443

Limitations of Genetic Algorithms 445

Genetic Algorithm Applications 445

10.4 Simulation 446 ~ APPLICATION CASE 10.2 Improving Maintenance Decision Making in

the Finnish Air Force Through Simulation 446

~ APPLICATION CASE 10.3 Simulating Effects of Hepatitis B Interventions 447

Major Characteristics of Simulation 448 Advantages of Simulation 449

Disadvantages of Simulation 450 The Methodology of Simulation 450 Simulation Types 451

Monte Carlo Simulation 452 Discrete Event Simulation 453

10.5 Visual Interactive Simulation 453 Conventional Simulation Inadequacies 453 Visual Interactive Simulation 453

Visual Interactive Models and DSS 454 ~ APPLICATION CASE 10.4 Improving Job-Shop Scheduling Decisions

Through RFID: A Simulation-Based Assessment 454

Simulation Software 457

Conte nts xv

xvi Contents

10.6 System Dynamics Modeling 458 10.7 Agent-Based Modeling 461

~ APPLICATION CASE 10.5 Agent-Based Simulation Helps Analyze Spread of a Pandemic Outbreak 463

Chapter Highlights 464 • Key Terms 464 Questions for Discussion 465 • Exercises 465

~ END-OF-CHAPTER APPLICATION CASE HP Applies Management Science Modeling to Optimize Its Supply Chain and Wins a Major Award 465

References 467

Chapter 11 Automated Decision Systems and Expert Systems 469 11.1 Opening Vignette: I nterContinental Hotel Group Uses

Decision Rules for Optimal Hotel Room Rates 470 11.2 Automated Decision Systems 471

~ APPLICATION CASE 11.1 Giant Food Stores Prices the Entire Store 472

11.3 The Artificial Intelligence Field 475 11.4 Basic Concepts of Expert Systems 477

Experts 477

Expertise 478

Features of ES 478 ~ APPLICATION CASE 11.2 Expert System Helps in Identifying Sport

Talents 480

11.5 Applications of Expert Systems 480 ~ APPLICATION CASE 11.3 Expert System Aids in Identification of

Chemical, Biological, and Radiological Agents 481

Classical Applications of ES 481 Newer Applications of ES 482 Areas for ES Applications 483

11.6 Structure of Expert Systems 484 Knowledge Acquisition Subsystem 484

Knowledge Base 485 Inference Engine 485

User Interface 485 Blackboard (Workplace) 485

Explanation Subsystem (Justifier) 486 Knowledge-Refining System 486 ~ APPLICATION CASE 11.4 Diagnosing Heart Diseases by Signal

Processing 486

11.7 Knowledge Engineering 487 Knowledge Acquisition 488

Knowledge Verification and Validation 490

Knowledge Representation 490

Inferencing 491

Explanation and Justification 496

11.8 Problem Areas Suitable for Expert Systems 497 11.9 Development of Expert Systems 498

Defining the Nature and Scope of the Problem 499

Identifying Proper Experts 499

Acquiring Knowledge 499

Selecting the Building Tools 499

Coding the System 501

Evaluating the System 501 .... APPLICATION CASE 11.5 Clinical Decision Support System for Tendon Injuries 501

11.10 Concluding Remarks 502 Chapter Highlights 503 • Key Terms 503

Questions for Discussion 504 • Exercises 504

.... END·OF·CHAPTER APPLICATION CASE Tax Collections Optimization for New York State 504

References 505

Chapter 12 Knowledge Management and Collaborative Systems 507 12.1 Opening Vignette: Expertise Transfer System to Train

Future Army Personnel 508

12.2 Introduction to Knowledge Management 512 Knowledge Management Concepts and Definitions 513 Knowledge 513

Explicit and Tacit Knowledge 515

12.3 Approaches to Knowledge Management 516 The Process Approach to Knowledge Management 517

The Practice Approach to Knowledge Management 51 7

Hybrid Approaches to Knowledge Management 51 8

Knowledge Repositories 518

12.4 Information Technology (IT) in Knowledge Management 520

The KMS Cyde 520

Components of KMS 521

Technologies That Support Knowledge Management 521

12.5 Making Decisions in Groups: Characteristics, Process, Benefits, and Dysfunctions 523

Characteristics of Groupwork 523

The Group Decision-Making Process 524

The Benefits and Limitations of Groupwork 524

12.6 Supporting Groupwork with Computerized Systems 526 An Overview of Group Support Systems (GSS) 526

Groupware 527

Time/Place Framework 527

12.7 Tools for Indirect Support of Decision Making 528 Groupware Tools 528

Conte nts xvii

xviii Contents

Groupware 530

Collaborative Workflow 530

Web 2.0 530

Wikis 531

Collaborative Networks 531

12.8 Direct Computerized Support for Decision Making: From Group Decision Support Systems to Group Support Systems 532

Group Decision Support Systems (GOSS) 532

Group Support Systems 533

How GOSS (or GSS) Improve Groupwork 533

Facilities for GOSS 534 Chapter Highlights 535 • Key Terms 536

Questions for Discussion 536 • Exercises 536

~ END-OF-CHAPTER APPLICATION CASE Solving Crimes by Sharing Digital Forensic Knowledge 537

References 539

Part V Big Data and Future Directions for Business Analytics 541

Chapter 13 Big Data and Analytics 542 13.1 Opening Vignette: Big Data Meets Big Science at CERN 543 13.2 Definition of Big Data 546

The Vs That Define Big Data 547 ~ APPLICATION CASE 13.1 Big Data Analytics Helps Luxottica Improve

Its Marketing Effectiveness 550

13.3 Fundamentals of Big Data Analytics 551 Business Problems Addressed by Big Data Analytics 554 ~ APPLICATION CASE 13.2 Top 5 Investment Bank Achieves Single

Source of Truth 555

13.4 Big Data Technologies 556 MapReduce 557

Why Use Map Reduce? 558

Hadoop 558

How Does Hadoop Work? 558

Hadoop Technical Components 559

Hadoop: The Pros and Cons 560

NoSQL 562 ~ APPLICATION CASE 13.3 eBay's Big Data Solution 563

13.5 Data Scientist 565 Where Do Data Scientists Come From? 565 ~ APPLICATION CASE 13.4 Big Data and Analytics in Politics 568

13.6 Big Data and Data Warehousing 569 Use Case(s) for Hadoop 570

Use Case(s) for Data Warehousing 571

The Gray Areas (Any One of the Two Would Do the Job) 572

Coexistence of Hadoop and Data Warehouse 572 13.7 Big Data Vendors 574

~ APPLICATION CASE 13.5 Dublin City Council Is Leveraging Big Data to Reduce Traffic Congestion 575

~ APPLICATION CASE 13.6 Creditreform Boosts Credit Rating Quality with Big Data Visual Analytics 580

13.8 Big Data and Stream Analytics 581 Stream Analytics Versus Perpetual Analytics 582

Critical Event Processing 582 Data Stream Mining 583

13.9 Applications of Stream Analytics 584 e-commerce 584

Telecommunications 584 ~ APPLICATION CASE 13.7 Turning Machine-Generated Streaming Data

into Valuable Business Insights 585

Law Enforcement and Cyber Security 586

Power Industry 587

Financial Services 587 Health Sciences 587

Government 587 Chapter Highlights 588 • Key Terms 588

Questions for Discussion 588 • Exercises 589 ~ END-OF-CHAPTER APPLICATION CASE Discovery Health Turns Big

Data into Better Healthcare 589

References 591

Chapter 14 Business Analytics: Emerging Trends and Future Impacts 592 14.1 Opening Vignette: Oklahoma Gas and Electric Employs

Analytics to Promote Smart Energy Use 593 14.2 Location-Based Analytics for Organizations 594

Geospatial Analytics 594 ~ APPLICATION CASE 14.1 Great Clips Employs Spatial Analytics to

Shave Time in Location Decisions 596

A Multimedia Exercise in Analytics Employing Geospatial Analytics 597 Real-Time Location Intelligence 598 ~ APPLICATION CASE 14.2 Quiznos Targets Customers for Its

Sandwiches 599

14.3 Analytics Applications for Consumers 600 ~ APPLICATION CASE 14.3 A Life Coach in Your Pocket 601

14.4 Recommendation Engines 603 14.5 Web 2.0 and Online Social Networking 604

Representative Characteristics of Web 2.0 605

Social Networking 605

A Definition and Basic Information 606 Implications of Business and Enterprise Social Networks 606

Conte nts xix

xx Contents

14.6 Cloud Computing and Bl 607 Service-Oriented DSS 608

Data-as-a-Service (DaaS) 608

Information-as-a-Service (Information on Demand) (laaS) 611

Analytics-as-a-Service (AaaS) 611

14.7 Impacts of Analytics in Organizations: An Overview 613 New Organizational Units 613

Restructuring Business Processes and Virtual Teams 614

The Impacts of ADS Systems 614

Job Satisfaction 614

Job Stress and Anxiety 614 Analytics' Impact on Managers' Activities and Their Performance 615

14.8 Issues of Legality, Privacy, and Ethics 616 Legal Issues 616

Privacy 617

Recent Technology Issues in Privacy and Analytics 618

Ethics in Decision Making and Support 619

14.9 An Overview of the Analytics Ecosystem 620 Analytics Industry Clusters 620

Data Infrastructure Providers 620

Data Warehouse Industry 621

Middleware Industry 622

Data Aggregators/Distributors 622

Analytics-Focused Software Developers 622

Reporting/Analytics 622

Predictive Analytics 623

Prescriptive Analytics 623

Application Developers or System Integrators: Industry Specific or General 624

Analytics User Organizations 625

Analytics Industry Analysts and Influencers 627

Academic Providers and Certification Agencies 628 Chapter Highlights 629 • Key Terms 629

Questions for Discussion 629 • Exercises 630

~ END·OF·CHAPTER APPLICATION CASE Southern States Cooperative Optimizes Its Catalog Campaign 630

References 632

Glossary 634

Index 648

PREFACE

Analytics has become the technology driver of this decade. Companies such as IBM, Oracle, Microsoft, and others are creating new organizational units focused on analytics that help businesses become more effective and efficient in their operations. Decision makers are using more computerized tools to support their work. Even consumers are using analytics tools directly or indirectly to make decisions on routine activities such as shopping, healthcare, and entertainment. The field of decision support systems (DSS)/ business intelligence (BI) is evolving rapidly to become more focused on innovative appli- cations of data streams that were not even captured some time back, much less analyzed in any significant way. New applications turn up daily in healthcare, sports, entertain- ment, supply chain management, utilities, and virtually every industry imaginable.

The theme of this revised edition is BI and analytics for enterprise decision support. In addition to traditional decision support applications, this edition expands the reader's understanding of the various types of analytics by providing examples, products, services, and exercises by discussing Web-related issues throughout the text. We highlight Web intelligence/Web analytics, which parallel Bl/business analytics (BA) for e-commerce and other Web applications. The book is supported by a Web site (pearsonhighered.com/ sharda) and also by an independent site at dssbibook.com. We will also provide links to software tutorials through a special section of the Web site.

The purpose of this book is to introduce the reader to these technologies that are generally called analytics but have been known by other names. The core technology consists of DSS, BI, and various decision-making techniques. We use these terms inter- changeably. This book presents the fundamentals of the techniques and the manner in which these systems are constructed and used. We follow an EEE approach to introduc- ing these topics: Exposure, Experience, and Explore. The book primarily provides exposure to various analytics techniques and their applications. The idea is that a student will be inspired to learn from how other organizations have employed analytics to make decisions or to gain a competitive edge. We believe that such exposure to what is being done with analytics and how it can be achieved is the key component of learning about analytics. In describing the techniques, we also introduce specific software tools that can be used for developing such applications. The book is not limited to any one software tool , so the students can experience these techniques using any number of available software tools. Specific suggestions are given in each chapter, but the student and the professor are able to use this book with many different software tools. Our book's com- panion Web site will include specific software guides, but students can gain experience with these techniques in many different ways. Finally, we hope that this exposure and experience enable and motivate readers to explore the potential of these techniques in their own domain. To facilitate such exploration, we include exercises that direct them to Teradata University Network and other sites as well that include team-oriented exer- cises where appropriate. We will also highlight new and innovative applications that we learn about on the book's companion Web sites.

Most of the specific improvements made in this tenth edition concentrate on three areas: reorganization, content update, and a sharper focus. Despite the many changes, we have preserved the comprehensiveness and user friendliness that have made the text a market leader. We have also reduced the book's size by eliminating older and redundant material and by combining material that was not used by a majority of professors. At the same time, we have kept several of the classical references intact. Finally, we present accurate and updated material that is not available in any other text. We next describe the changes in the tenth edition.

xxi

xxii Preface

WHAT'S NEW IN THE TENTH EDITION?

With the goal of improving the text, this edition marks a major reorganization of the text to reflect the focus on analytics. The last two editions transformed the book from the traditional DSS to BI and fostered a tight linkage with the Teradata University Network (TUN). This edition is now organized around three major types of analytics. The new edition has many timely additions , and the dated content has been deleted. The following major specific changes have been made:

• New organization. The book is now organized around three types of analytics: descriptive, predictive, and prescriptive, a classification promoted by INFORMS. After introducing the topics of DSS/ BI and analytics in Chapter 1 and covering the founda- tions of decision making and decision support in Chapter 2, the book begins with an overview of data warehousing and data foundations in Chapter 3. This part then cov- ers descriptive or reporting analytics, specifically, visualization and business perfor- mance measurement. Chapters 5-8 cover predictive analytics. Chapters 9-12 cover prescriptive and decision analytics as well as other decision support systems topics. Some of the coverage from Chapter 3-4 in previous editions will now be found in the new Chapters 9 and 10. Chapter 11 covers expert systems as well as the new rule-based systems that are commonly built for implementing analytics. Chapter 12 combines two topics that were key chapters in earlier editions-knowledge manage- ment and collaborative systems. Chapter 13 is a new chapter that introduces big data and analytics. Chapter 14 concludes the book with discussion of emerging trends and topics in business analytics, including location intelligence, mobile computing, cloud-based analytics, and privacy/ethical considerations in analytics. This chapter also includes an overview of the analytics ecosystem to help the user explore all of the different ways one can participate and grow in the analytics environment. Thus, the book marks a significant departure from the earlier editions in organization. Of course, it is still possible to teach a course with a traditional DSS focus with this book by covering Chapters 1-4, Chapters 9-12, and possibly Chapter 14.

• New chapters. The following chapters have been added:

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Write My Coursework
Financial Hub
Online Assignment Help
University Coursework Help
Quick Mentor
Quick N Quality
Writer Writer Name Offer Chat
Write My Coursework

ONLINE

Write My Coursework

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$22 Chat With Writer
Financial Hub

ONLINE

Financial Hub

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$15 Chat With Writer
Online Assignment Help

ONLINE

Online Assignment Help

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$17 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$22 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$47 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$20 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Sociology help 2 - Leadership project week 2 - MeetMe vs Facebook - Difference between rnav and rnp - Process strategy in operations management - Human Sexuality Throughout History Time-line - Dr michael oldmeadow alfred hospital - WEEK 5 #2 - Engineering double degree curtin - When do jeremy and bonnie break up - Homework - What is tone colour - Hambledon hunt north pony club - Forms queries and reports - Open geospatial consortium inc - Differentiate between true ribs and false ribs - Train tickets derry to portrush - Cash cow win page - My birkbeck profile login - Subnetting math problems - Masters in biostatistics uq - Data security plan template - Do ballads have to rhyme - Which of the following is true of a sole proprietorship? - What is a polygon with 6 sides and 6 angles - Lucretius on the nature of things - Sqa higher psychology assignment examples - Nylex rainfall registration chart - Assignment - The catcher in the rye genres literary realism - Virtual lab natural selection glencoe - Expansion strategy and establishing a reorder point excel - A perspective that revolves around how relational partners manage tensions is called - DISCUSSION - Test cases for calculator - Recruitment selection and orientation - Business Law - Research methods- 1 - This supernatural soliciting cannot be ill - Shadow health chest pain answers - Management homework - Psyc 499 liberty university - Wrench llc v taco bell - Pierre bourdieu influenced by - Phipps v rochester corporation - Charles hockett design features - Royal bolton hospital consultants - What is an example of a folktale story - +91-8306951337 love marriage specialist astrologer IN Amritsar - Using models in science teaching - Introduction to Ethics Proposal - Discussion - Dark dense igneous rock - Two tier email architecture - Crime and punishment in the middle ages - Sas 180 air sampler manual - How can amazon improve its weakness - What happens when two plates carrying continental crust collide - Mamá hola daniela cómo 1 - How to write service level agreement - Gen Biology Class Discussion 1 - Spanish numbers 0 200 - How do natural killer cells differ from macrophages - Energy skate park part 1 kinetic and potential energy - Blood diamond movie review - Unit 3 assessing risk in sport m1 - Soc 120 week 2 assignment waste reduction - 401 servo alarm vrdy off - 13th documentary discussion questions - Aristotle nicomachean ethics cliff notes - States of matter word search - World and screen nicholas carr summary - Order 2046981: Short Essay - Bsc mathematics and computer science jkuat - Infant toddler curriculum and individualization - At green mountain the company is departmentalized by - Model ecosystems virtual lab journal answers - Discussion #5 - R code, and report - WEEK 5 Discussion Prompt 2 Pharmacology - Which restates the claim of a literary analysis - Lake point consulting services - Assignment - So3 molecular compound name - What is spatial organization in psychology - Which fields tend to attract entrepreneurs the most - Emirates airline management structure - Lte physical layer tutorial - A&p flix activity dna replication - How to make an arctic habitat in a shoebox - What are the primary components of panera bread's value chain - The Brain and Cranial Nerves homework - Research paper - Difference between west egg and east egg - Doo wop chart topper for the marcels - Igcse maths past papers 2012 - School catchment area peterborough - Gucci diamond belt $256 970 - Business law chapter 8 test answers - Essay Assignment 1: Character Evolution Instructions