Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Torsion of circular sections lab report

30/12/2020 Client: saad24vbs Deadline: 24 Hours

CIVE302 Spring 2013 Dr. Dowell T. Johnson


Lab 4. Torsion of Member with Circular Cross-Section: Principal Strains and Stresses


Thus far our only focus has been on axial deformations which cause elongation or compression


of a member along their axis of application. Other types of deformation exist, though, such as


shear deformations which translate or slide the face on which they act. To help visualize this


behavior, in this lab a solid steel shaft with circular cross-section is loaded under pure torsion.


Torsion is caused when a moment is applied in-plane with the cross-section of the member,


twisting it and causing it to deform in shear. A visualization of this is provided below in Figure


4-1.


Figure 4-1: Deformation of a body under shear conditions


Recall that the measurement devices used thus far only measure elongation or contraction


along their primary axis. Meaning that strain gages cannot directly measure these values.


Looking at more detail at Figure 4.1, it is clear that the shear strain, γ , is not a linear quantity


but an angle of distortion. We thus need additional techniques to be able to somehow


determine shear strain from linear-based measurement equipment.


For a bar in pure torsion, each section along the longitudinal axis rotates strictly in a plane; that


is, all points within the member follow a strictly a circular arc in the plane and do not translate


in either direction along the member axis. Note that this is not the case for non-circular cross-


2


sections, as torsion develops warping deformations which displace points axially in addition to


rotationally. This behavior is shown below in Figure 4-2, where it can be seen that point B at the


outermost fiber of the cross-section travels along the circumference of the circle to B’ at an


applied torsion of To.


Figure 4-2. Member deformation from applied torsion To


Torsional loading at a section causes shear stresses that are zero at the center of the member


and increase linearly with radius r to a maximum at the surface of the cylinder at r = R. Shear


stress is found from the section torsion T, radius r, and polar moment of inertia J as


J


Tr  (4-1)


For a circular section, the polar moment of inertia is equal to the sum of moments of inertia


about the x and y axes as


A B


To To


L


B’


3


244


444 Rrr IIJ yx


  (4-2)


Shear strain is found by dividing the shear stress by the shear modulus G, where the shear


modulus is found for a given material from material testing as the slope of the shear stress


versus shear strain plot. Thus shear strain is found from


JG


Tr


G 


  (4-3)


Note the similarities in this equation to those seen in the previous labs. To calculate axial


stresses, we had a driving axial load P that was divided by the cross-sectional area – a geometric


property of the member. Then, to calculate strains, we divided this stress by the modulus of


elasticity – a material property of the section – and concluded that the deformation is a


function of the driving load P, the geometrical resistance of the member, and the material


resistance of the member. In the case of torsional strain, we see a similar pattern: a torque T


drives the deformation of the member, a geometric resistance forms via r and J, and a material


resistance forms via the shear modulus G.


Fixing a member on one end and applying a torsion To to the end free to rotate yields the


deformed shape given in Figures 4-2 and 4-3. At the left end of the member all points of the


cross-section are restrained from rotation and remain in the same place before and after


torsion is applied. At the right end of the member, however, torsional loading causes the cross-


section to rotate through an angle indicated by the movement of point B to B’. This point starts


at the top of the section but shifts along the perimeter of the cross-section. All points on the


surface at the right end of the member move through the same angle as point B, though,


generating a rotation of the full cross-section.


4


For the example shown in Figure 4-3, the torsion is constant along the member length which


results in a linear variation of deformation from Points A to B. In other words, the amount of


rotation at half the member length is one-half of the maximum rotation at the right end of the


member. To demonstrate this, two lines are given in Figure 4-3 that were originally parallel to


the member geometry and have deformed from load application. A stress element shows that


the original rectangular shape has been deformed due to shear stresses; the length of the sides


remain unchanged, but the amount of deformation of the corners on the left face and the


corners on the right face differ in magnitude. Applied and reacting torsions are indicated with


double arrows: arrows pointing away from the member indicate positive torsion while arrows


facing toward the member indicate negative torsion, with the rotational direction following


that defined by the right hand rule. Positive torsion definition is given for any slice of the beam


in Figure 4-4 and the torsion diagram for the example provided in Figure 4-3 is given in Figure


4-5.


Figure 4-3. Side view of member under torsion with stress element indicated


A B


To To


L


B’


Stress Element


5


Figure 4-4. Definition of positive torsion for a short length of the member (slice)


Figure 4-5. Torsion diagram over member length


When the torsion is constant along a member length as in Figure 4-4 the rotation at its right


end, called the angle of twist, is given as


JG


Tl  (4-4)


TT +


T


X A B


To


6


If the torsion varies along the member length, however, rotation needs to integrated over the


length of the member similar to how distributed loads must be integrated for beam


displacements. To do this the twist of the member, which is the rotation per unit length, is


calculated for a given cross-section


JG


T 


(4-5)


The rotation at this cross-section is then calculated by integrating over the length


 l


dx JG


T


0




(4-6)


An example of torsion that varies along the member length is given in Figure 4-6, with evenly


distributed torsion of To/L applied for the entire member length. There is no torsion in the


member at its right end and the torsion increases linearly to a maximum at the left of the


member. From statics, the torsion reaction at the fixed end is To and the torsion diagram can


be developed as shown in Figure 4-6. The torsion in the member at any section along its length


is given as


 


  


 


L


x Tx


L


T TT o


o o 1


(4-7)


7


Figures 4-6. Distributed torsion along member length with torsion diagram


Torsion given as a function of x in Eq. (4-7) is substituted into Eq. (4-6) to find member rotation.


Thus


  


  


 


 l ol


dx JG


L


x T


dx JG


T


00


1




(4-8)


8


If the material is the same for the entire member and the cross-section is constant then J and G


are constant and can be moved out of the integral, as can the constant To, giving


JG


lT dx


L


x


JG


T o l


o B


2 1


0


  


  


 


(4-9)


This is half the rotation of a member that has constant torque along its length with the same


reacting torsion at its left end of To.


The stress element shown in Figure 4-3 distorts due to an upward shear stress on its left side


and, from statics, an equal and opposite shear stress on its right side (down) similar to how the


block in Figure 4-1(b) deforms. However, while this satisfies equilibrium of forces in the vertical


direction, equilibrium of the stress block as a whole is not satisfied: by themselves these shear


stresses form a couple and thus give a tendency for the block to rotate.


To correct for this, moments can be taken about one of the bottom corners of the stress block


to generate a balancing horizontal stress on the top face that imparts an equal but opposite


rotation to the vertical shear stresses. It is found that this horizontal shear stress is equal in


magnitude to the two vertical shear stresses, and equilibrium in the horizontal direction shows


that an equal but opposite shear stress forms on the bottom face. To help visualize this process,


an element is also shown at the top right of Figure 4-7 with these shear stresses indicated. The


stress element has dimensions of dx and dy, and when it has a square or rectangular shape it


vanishes to a single point.


With shear stresses defined at a stress element from torsion, it is possible to determine


maximum compressive and tensile stresses of the stress element that act on different faces of


9


the element (at different angles). These are called principal stresses and can be determined


through the use of Mohr’s circle as shown in Figure 4-7. For a given set of shear and normal


stresses on two planes of a stress element, Mohr’s circle is constructed. The horizontal axis is


for normal stresses on a plane and the vertical axis is for shear stresses on a plane. X and Y


planes are defined by passing the x and y axes through the element and the faces that are


intersected are defined, as indicated at the bottom right of Figure 4-7. There are two X planes


and two Y planes, and either one can be used in the following discussion as they are completely


interchangeable.


Figure 4-7. Mohr’s circle with stress element and plane definitions


t


t


dx


dy


t


s


X (0, t )


Y (0, -t )


s 1s 2


f 1


f 2


x


y


x Planex Plane


y Plane


y Plane


10


To construct Mohr’s circle an X coordinate and Y coordinate are plotted, representing the


normal and shear stresses on X and Y faces, respectively, of the stress element being


considered. On the X plane of our stress element there is a positive shear and no normal stress,


resulting in the X point given in Figure 4-7. As discussed before, the X plane on either left or


right sides of the element can be used to determine the shear and normal stresses to plot in


Mohr’s circle.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

A Grade Exams
University Coursework Help
Smart Accountants
Helping Hand
Quick Mentor
Top Essay Tutor
Writer Writer Name Offer Chat
A Grade Exams

ONLINE

A Grade Exams

Hi, I have read the instructions carefully and I clearly understand what is required of the project. I always make sure I proofread and edit papers well to ensure they are free of typos, plagiarism, and grammar mistakes. Hire me for a timely delivery of a quality content.

$95 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

Hi dear, I am ready to do your homework in a reasonable price.

$102 Chat With Writer
Smart Accountants

ONLINE

Smart Accountants

I feel, I am the best option for you to fulfill this project with 100% perfection. I am working in this industry since 2014 and I have served more than 1200 clients with a full amount of satisfaction.

$95 Chat With Writer
Helping Hand

ONLINE

Helping Hand

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

$100 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

Hey, I have gone through your job posting and become very much interested in working with you.I can deliver professional content as per your requirements. I am a multi-skilled person with sound proficiency in the English language for being a native writer who worked on several similar projects of content writing and can deliver quality content to tight deadlines. I am available for both online and offline writing jobs with the promise of offering an incredibly responsive and supreme level of customer service. Thanks!

$95 Chat With Writer
Top Essay Tutor

ONLINE

Top Essay Tutor

I have more than 12 years of experience in managing online classes, exams, and quizzes on different websites like; Connect, McGraw-Hill, and Blackboard. I always provide a guarantee to my clients for their grades.

$105 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Hspi the pogil project answer key - Intel business strategy case study pdf - Acid indicator crossword clue - Annotated bibliography on police brutality - BW Texas Gov't Unit 2 Dis 5.2 - William william henry stephen henry richard john lyrics - When rewarding employees let them bus 302 - The central idea for your speech on use sunscreen - A strategy of diversifying into unrelated businesses - Pretest and posttest research design - 32 lowndes drive oran park - What year did romulus die - Operation Management Final - I heard that oxygen and magnesium got together - 1/5 - Much ado about nothing tricking benedick scene - Weeks 1 and 2 Technology and Caring for the Client Essay CLINICAL CONCEPTS - Royal pigeon racing association - Little waltham drama group - New Media Assignment - Renegade dreams chapter 2 summary - African history discussion - Saving sourdi literature to go - Under which circumstance does the center of gravity of an object coincide with the center of mass? - Creac legal writing example - A california software firm macrosoft - DISCUSSION - Value funnel - Ato private health insurance rebate tiers - Aging on the human body - Orange county school of the arts - The relation of habitual thought and behavior to language pdf - Night watch roy popkin discussion questions - How many miles is a million steps - African American Studies_Week 2 - Marketing Campaign Assignment - Practice of clinical psychology worksheet - Phantom Wallet Extension - Dino dig carnival game - Chordophones are instruments whose sound generator is a - My brother sam is dead questions - Complex adaptive systems nursing examples - Berrima district credit union internet banking - LM5: Correlation and experimental, results practice - Intro to criminology - Phasor to rectangular calculator - The stock of nogro corporation is currently - Nyora gardens nursing home - Leo coco white hazelnut spread - How to calculate total budgeted selling and administrative expenses - Input output analysis questions and answers - Assignment 3 cultural activity report - 250 words paper - Week5 -LDR - Aat level 3 syllabus - ECONOMICS OF ORGANIZATION AND STRATEGY - How is single loss expectancy sle calculated - What is the zeroth law of robotics - Information system capstone project - Integrating Multimedia in ELA Instruction - Bmc course questions - Mixed methods research proposal example - Mattel recall case study - Coke and mentos facts - IOM Report - What is an endorsement for scheduled medicines - Greens norton medical centre - Selling expense flexible budget report - According to zinn what is his main purpose for writing - Puente hills toyota case study - This i believe statement ideas - Gbmc internal medicine residency - Discussion 200 words original work no plagiarism - Classroom observation and teacher interview paper - Inter - Summary of percy jackson and the sea of monsters - How to calibrate rosemount absolute pressure transmitter - 10 column accounting worksheet example - Nursing smart goals examples - For discussion purposes only - Www 3p net au - Prom king and queen nomination forms - Database security - Big bang theory chicken pecking for corn - Nova evolution lab mission 3 answers - Is the bayeux tapestry a primary or secondary source - Swing equation in power system stability ppt - Internal scanning organizational analysis - How to find vulnerabilities with nmap - The ugly american quotes - Into the wild tragedy - In a laboratory experiment you wish to determine - Bill nye rock cycle worksheet - Conch republic electronics case study - 150 -200 paragraph - Week 4 career and company research - Assignment #013 - Discussion Post - Guhan subramanian harvard business school - He who hesitates is lost origin of phrase