Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Typeerror findall missing 1 required positional argument string

13/11/2021 Client: muhammad11 Deadline: 2 Day

Data Science ——MNIST

1. mnist_deep.py read (where is the training, where is the test?)

2. Find the code for the training and save the model locally, called model.ckpt

Docker:

3. app.py

(1)restore model.ckpt, assuming model f(volume)docker run -v

(2)Given any graph x,f(x) = digit

(3)Deploy f(x) to Flask

(4)Write the current time, file name, and predicted number into Cassandra

Level-0:Implement the above code locally

My test1 always identify wrong, my test2 is not working. I need help to fix these two. And then finish step 3 and level-0

Im using Pycharm, Macbook pro. Please make sure I can run your code in mac environment.

DATA SCIENCE/.DS_Store
__MACOSX/DATA SCIENCE/._.DS_Store
DATA SCIENCE/venv/MNIST_data/t10k-images-idx3-ubyte.gz
DATA SCIENCE/venv/MNIST_data/t10k-images-idx3-ubyte
DATA SCIENCE/venv/MNIST_data/train-images-idx3-ubyte.gz
DATA SCIENCE/venv/MNIST_data/train-images-idx3-ubyte
DATA SCIENCE/venv/MNIST_data/train-labels-idx1-ubyte.gz
DATA SCIENCE/venv/MNIST_data/train-labels-idx1-ubyte
DATA SCIENCE/venv/MNIST_data/t10k-labels-idx1-ubyte.gz
DATA SCIENCE/venv/MNIST_data/t10k-labels-idx1-ubyte
DATA SCIENCE/venv/.DS_Store
__MACOSX/DATA SCIENCE/venv/._.DS_Store
DATA SCIENCE/venv/TEST/.DS_Store
__MACOSX/DATA SCIENCE/venv/TEST/._.DS_Store
DATA SCIENCE/venv/TEST/8.png
DATA SCIENCE/venv/TEST/9.png
DATA SCIENCE/venv/TEST/4.png
DATA SCIENCE/venv/TEST/5.png
DATA SCIENCE/venv/TEST/7.png
__MACOSX/DATA SCIENCE/venv/TEST/._7.png
DATA SCIENCE/venv/TEST/6.png
DATA SCIENCE/venv/TEST/2.png
__MACOSX/DATA SCIENCE/venv/TEST/._2.png
DATA SCIENCE/venv/TEST/3.png
DATA SCIENCE/venv/TEST/1.png
DATA SCIENCE/venv/8.png
__MACOSX/DATA SCIENCE/venv/._8.png
DATA SCIENCE/venv/bin/pip3.7
#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )

DATA SCIENCE/venv/bin/python3
DATA SCIENCE/venv/bin/easy_install
#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )

DATA SCIENCE/venv/bin/python
DATA SCIENCE/venv/bin/pip3
#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )

DATA SCIENCE/venv/bin/activate.fish
# This file must be used with ". bin/activate.fish" *from fish* (http://fishshell.org) # you cannot run it directly function deactivate -d "Exit virtualenv and return to normal shell environment" # reset old environment variables if test -n "$_OLD_VIRTUAL_PATH" set -gx PATH $_OLD_VIRTUAL_PATH set -e _OLD_VIRTUAL_PATH end if test -n "$_OLD_VIRTUAL_PYTHONHOME" set -gx PYTHONHOME $_OLD_VIRTUAL_PYTHONHOME set -e _OLD_VIRTUAL_PYTHONHOME end if test -n "$_OLD_FISH_PROMPT_OVERRIDE" functions -e fish_prompt set -e _OLD_FISH_PROMPT_OVERRIDE functions -c _old_fish_prompt fish_prompt functions -e _old_fish_prompt end set -e VIRTUAL_ENV if test "$argv[1]" != "nondestructive" # Self destruct! functions -e deactivate end end # unset irrelevant variables deactivate nondestructive set -gx VIRTUAL_ENV "/Users/lenoxye/PycharmProjects/MIT/venv" set -gx _OLD_VIRTUAL_PATH $PATH set -gx PATH "$VIRTUAL_ENV/bin" $PATH # unset PYTHONHOME if set if set -q PYTHONHOME set -gx _OLD_VIRTUAL_PYTHONHOME $PYTHONHOME set -e PYTHONHOME end if test -z "$VIRTUAL_ENV_DISABLE_PROMPT" # fish uses a function instead of an env var to generate the prompt. # save the current fish_prompt function as the function _old_fish_prompt functions -c fish_prompt _old_fish_prompt # with the original prompt function renamed, we can override with our own. function fish_prompt # Save the return status of the last command set -l old_status $status # Prompt override? if test -n "(venv) " printf "%s%s" "(venv) " (set_color normal) else # ...Otherwise, prepend env set -l _checkbase (basename "$VIRTUAL_ENV") if test $_checkbase = "__" # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ printf "%s[%s]%s " (set_color -b blue white) (basename (dirname "$VIRTUAL_ENV")) (set_color normal) else printf "%s(%s)%s" (set_color -b blue white) (basename "$VIRTUAL_ENV") (set_color normal) end end # Restore the return status of the previous command. echo "exit $old_status" | . _old_fish_prompt end set -gx _OLD_FISH_PROMPT_OVERRIDE "$VIRTUAL_ENV" end

DATA SCIENCE/venv/bin/easy_install-3.7
#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )

DATA SCIENCE/venv/bin/python3.7
DATA SCIENCE/venv/bin/pip
#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )

DATA SCIENCE/venv/bin/activate
# This file must be used with "source bin/activate" *from bash* # you cannot run it directly deactivate () { # reset old environment variables if [ -n "${_OLD_VIRTUAL_PATH:-}" ] ; then PATH="${_OLD_VIRTUAL_PATH:-}" export PATH unset _OLD_VIRTUAL_PATH fi if [ -n "${_OLD_VIRTUAL_PYTHONHOME:-}" ] ; then PYTHONHOME="${_OLD_VIRTUAL_PYTHONHOME:-}" export PYTHONHOME unset _OLD_VIRTUAL_PYTHONHOME fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n "${BASH:-}" -o -n "${ZSH_VERSION:-}" ] ; then hash -r fi if [ -n "${_OLD_VIRTUAL_PS1:-}" ] ; then PS1="${_OLD_VIRTUAL_PS1:-}" export PS1 unset _OLD_VIRTUAL_PS1 fi unset VIRTUAL_ENV if [ ! "$1" = "nondestructive" ] ; then # Self destruct! unset -f deactivate fi } # unset irrelevant variables deactivate nondestructive VIRTUAL_ENV="/Users/lenoxye/PycharmProjects/MIT/venv" export VIRTUAL_ENV _OLD_VIRTUAL_PATH="$PATH" PATH="$VIRTUAL_ENV/bin:$PATH" export PATH # unset PYTHONHOME if set # this will fail if PYTHONHOME is set to the empty string (which is bad anyway) # could use `if (set -u; : $PYTHONHOME) ;` in bash if [ -n "${PYTHONHOME:-}" ] ; then _OLD_VIRTUAL_PYTHONHOME="${PYTHONHOME:-}" unset PYTHONHOME fi if [ -z "${VIRTUAL_ENV_DISABLE_PROMPT:-}" ] ; then _OLD_VIRTUAL_PS1="${PS1:-}" if [ "x(venv) " != x ] ; then PS1="(venv) ${PS1:-}" else if [ "`basename \"$VIRTUAL_ENV\"`" = "__" ] ; then # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ PS1="[`basename \`dirname \"$VIRTUAL_ENV\"\``] $PS1" else PS1="(`basename \"$VIRTUAL_ENV\"`)$PS1" fi fi export PS1 fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n "${BASH:-}" -o -n "${ZSH_VERSION:-}" ] ; then hash -r fi

DATA SCIENCE/venv/bin/activate.csh
# This file must be used with "source bin/activate.csh" *from csh*. # You cannot run it directly. # Created by Davide Di Blasi . # Ported to Python 3.3 venv by Andrew Svetlov alias deactivate 'test $?_OLD_VIRTUAL_PATH != 0 && setenv PATH "$_OLD_VIRTUAL_PATH" && unset _OLD_VIRTUAL_PATH; rehash; test $?_OLD_VIRTUAL_PROMPT != 0 && set prompt="$_OLD_VIRTUAL_PROMPT" && unset _OLD_VIRTUAL_PROMPT; unsetenv VIRTUAL_ENV; test "\!:*" != "nondestructive" && unalias deactivate' # Unset irrelevant variables. deactivate nondestructive setenv VIRTUAL_ENV "/Users/lenoxye/PycharmProjects/MIT/venv" set _OLD_VIRTUAL_PATH="$PATH" setenv PATH "$VIRTUAL_ENV/bin:$PATH" set _OLD_VIRTUAL_PROMPT="$prompt" if (! "$?VIRTUAL_ENV_DISABLE_PROMPT") then if ("venv" != "") then set env_name = "venv" else if (`basename "VIRTUAL_ENV"` == "__") then # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ set env_name = `basename \`dirname "$VIRTUAL_ENV"\`` else set env_name = `basename "$VIRTUAL_ENV"` endif endif set prompt = "[$env_name] $prompt" unset env_name endif alias pydoc python -m pydoc rehash

DATA SCIENCE/venv/Mnistdeep.py
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets('MNIST_data', one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape,stddev = 0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) def conv2d(x,W): return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = 'SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x,[-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) saver.save(sess, 'tmp/model.ckpt') print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

DATA SCIENCE/venv/test1.py
from PIL import Image, ImageFilter import tensorflow as tf import matplotlib.pyplot as plt import numpy as np def image_prepare(image_path): img = Image.open(image_path) im = img.resize((28, 28), Image.ANTIALIAS) im = im.convert('L') tv = list(im.getdata()) tva = [(255 - x) * 1.0 / 255.0 for x in tv] return tva image_path = input('Please enter the image path : ') result = image_prepare(image_path) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape = shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = "SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize = [1,2,2,1], strides = [1,2,2,1], padding = "SAME") W_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, "tmp/model.ckpt") prediction = tf.argmax(y_conv, 1) predict = prediction.eval(feed_dict={x: [result], keep_prob: 1.0}, session=sess) print('recognize result:') print(predict[0])

DATA SCIENCE/venv/pyvenv.cfg
home = /usr/local/bin include-system-site-packages = false version = 3.7.4

DATA SCIENCE/venv/test2.py
from PIL import Image, ImageFilter import tensorflow as tf import matplotlib.pyplot as plt import cv def imageprepare(): file_name='TEST/1.png' im = Image.open(file_name).convert('L') im.save("sample.png") plt.imshow(im) plt.show() tv = list(im.getdata()) #get pixel values #normalize pixels to 0 and 1. 0 is pure white, 1 is pure black. tva = [ (255-x)*1.0/255.0 for x in tv] #print(tva) return tva """ This function returns the predicted integer. The imput is the pixel values from the imageprepare() function. """ # Define the model (same as when creating the model file) result=imageprepare() x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) init_op = tf.initialize_all_variables() """ Load the model2.ckpt file file is stored in the same directory as this python script is started Use the model to predict the integer. Integer is returend as list. Based on the documentatoin at https://www.tensorflow.org/versions/master/how_tos/variables/index.html """ saver = tf.train.Saver() with tf.Session() as sess: sess.run(init_op) saver.restore(sess, "tmp/model.ckpt") #print ("Model restored.") prediction=tf.argmax(y_conv,1) predint=prediction.eval(feed_dict={x: [result],keep_prob: 1.0}, session=sess) print(h_conv2) print('recognize result:') print(predint[0])

DATA SCIENCE/venv/123.png
__MACOSX/DATA SCIENCE/venv/._123.png
DATA SCIENCE/venv/sample.png
DATA SCIENCE/venv/lib/.DS_Store
__MACOSX/DATA SCIENCE/venv/lib/._.DS_Store
DATA SCIENCE/venv/lib/python3.7/site-packages/easy-install.pth
./setuptools-40.8.0-py3.7.egg ./pip-19.0.3-py3.7.egg

DATA SCIENCE/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/EGG-INFO/PKG-INFO

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

George M.
Accounting & Finance Master
Engineering Exam Guru
Chartered Accountant
Engineering Guru
Calculation Master
Writer Writer Name Offer Chat
George M.

ONLINE

George M.

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$43 Chat With Writer
Accounting & Finance Master

ONLINE

Accounting & Finance Master

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$43 Chat With Writer
Engineering Exam Guru

ONLINE

Engineering Exam Guru

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$46 Chat With Writer
Chartered Accountant

ONLINE

Chartered Accountant

I am an academic and research writer with having an MBA degree in business and finance. I have written many business reports on several topics and am well aware of all academic referencing styles.

$21 Chat With Writer
Engineering Guru

ONLINE

Engineering Guru

After reading your project details, I feel myself as the best option for you to fulfill this project with 100 percent perfection.

$44 Chat With Writer
Calculation Master

ONLINE

Calculation Master

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$41 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Canvas chaffey - The rich eat three full meals - Wendy buss kitchen nightmares - Data Analysis - William and mary mental health - Uwa approved calculator list - Icris csc companies registry - Harlequin enterprises the mira decision case analysis - Shoprite retail provident fund - Critical thinking in nursing practice - University of bath campus map - Chelsea basketball stadium bonbeach - Animal classification games online - Theory Utilization and Application Paper - Material engineering - Saving investment and the financial system multiple choice - John daly scorecard today - How to write a nursing diagnosis in pes format - Wells Fargo: The Stage coach Went Out of Control - University of worcester sole - 2/57 kinsale street reservoir - Pr social media assignment - Ceo roles and responsibilities - Learning Resources - I need a discussion - Armor of god coloring pages - Https www qcaa qld edu au - Module 1 Discussion Forum OT - My last duchess analysis - The four great patriarchs in genesis are - Hephaestus symbols of power - Virology - Research Process & Methodology - What is the appropriate description for a plant processing franchise - Ethics discovering right and wrong 6th edition pdf - Pros and cons of postponement strategy - Apple product information sheet - Accounting and Auditing - Glucose negative feedback loop - Blood test hervey bay - Which is a characteristic of panamanian homes in santa fe - Difference between maximization and minimization in linear programming - What is corrected absorbance - Portsmouth teaching school alliance - 1890 guy metals drive hammond wi 54015 - Assuming the cost of an associate leaving within - Benefits of product development tutor2u - Introduction to law and the legal system 10th edition - Assignment - Advanced diploma of interpreting online - Word 2016 capstone project wd 3 writing a research paper - Dry unit weight to moist unit weight - Http www davidbordwell net blog - A focused differentiation strategy aims at securing competitive advantage - Exposition of psalm 119 - Cec testing and commissioning sheet - 96 frederick street launceston - To prevent violations of the stark law quizlet - Gc 2 worksheet 9 patterson answers - Classification and evolution of caminalcules answers - Presents from my aunts in pakistan poem - Bridging the gap college reading 9th edition answer key - Australian catholic university grading scale - Cloud performance testing ppt - Golden plaza hotel case study - Christopher parrish vsim - Costco wholesale corporation case study - Mickey monus - Essentials of management essay week 1 - Educational experience pty ltd - Cateye double wireless sensor - Assignment - Iom leading change advancing health - Group fitness feedback form - 1 page for each 2 pages in total due by 24 hours - Mole and mass relationships lab answers - Soap Note Assignment - How to measure systematic risk - A company that makes cola drinks - Readings in Folklore & Culture. - Aaron wheatley cutting horses - Australian gaap vs us gaap - Leadership development plan based on the attached format reference - O say can u see - Unit 3 Quiz - How to write speaking order - Prg 420 java programming i - W5 law - Lesson 17 openness and concealment answers - Our fear of immigrants - Is a pulley a force multiplier - Origins - Molar volume of hcl - Ifsm 300 stage 1 - Controversial or sensitive issue - What is the atomic radius of xenon - Null to null bandwidth - Literacy pre assessment quiz gcu answers - Sitting Bull - Sound effects in a streetcar named desire