Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

U2 6 solve quadratics by completing the square answers

23/10/2021 Client: muhammad11 Deadline: 2 Day

One Algebra Question

Section 0.7: Quadratic Equations from Precalculus Prerequisites a.k.a. ‘Chapter 0’ by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license. © 2013, Carl Stitz.

http://www.stitz-zeager.com/ch_0_links.pdf
http://www.stitz-zeager.com/ch_0_links.pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
0.7 Quadratic Equations 83

0.7 Quadratic Equations

In Section 0.6.1, we reviewed how to solve basic non-linear equations by factoring. The astute reader should have noticed that all of the equations in that section were carefully constructed so that the polynomials could be factored using the integers. To demonstrate just how contrived the equations had to be, we can solve 2x2 + 5x �3 = 0 by factoring, (2x �1)(x + 3) = 0, from which we obtain x = 12 and x = �3. If we change the 5 to a 6 and try to solve 2x

2 + 6x � 3 = 0, however, we find that this polynomial doesn’t factor over the integers and we are stuck. It turns out that there are two real number solutions to this equation, but they are irrational numbers, and our aim in this section is to review the techniques which allow us to find these solutions.1 In this section, we focus our attention on quadratic equations.

Definition 0.15. An equation is said to be quadratic in a variable X if it can be written in the form AX 2 + BX + C = 0 where A, B and C are expressions which do not involve X and A 6= 0.

Think of quadratic equations as equations that are one degree up from linear equations - instead of the highest power of X being just X = X 1, it’s X 2. The simplest class of quadratic equations to solve are the ones in which B = 0. In that case, we have the following.

Solving Quadratic Equations by Extracting Square Roots If c is a real number with c � 0, the solutions to X 2 = c are X = ±

p c.

Note: If c < 0, X 2 = c has no real number solutions.

There are a couple different ways to see why Extracting Square Roots works, both of which are demonstrated by solving the equation x2 = 3. If we follow the procedure outlined in the previous section, we subtract 3 from both sides to get x2 � 3 = 0 and we now try to factor x2 � 3. As mentioned in the remarks following Definition 0.14, we could think of x2�3 = x2� (

p 3)2 and apply

the Difference of Squares formula to factor x2�3 = (x� p

3)(x + p

3). We solve (x� p

3)(x + p

3) = 0 by using the Zero Product Property as before by setting each factor equal to zero: x �

p 3 = 0

and x + p

3 � 0. We get the answers x = ± p

3. In general, if c � 0, then p

c is a real number, so x2 � c = x2 � (

p c)2 = (x �

p c)(x +

p c). Replacing the ‘3’ with ‘c’ in the above discussion gives

the general result. Another way to view this result is to visualize ‘taking the square root’ of both sides: since x2 = c,p

x2 = p

c. How do we simplify p

x2? We have to exercise a bit of caution here. Note that p

(5)2 and

p

(�5)2 both simplify to p

25 = 5. In both cases, p

x2 returned a positive number, since the negative in �5 was ‘squared away’ before we took the square root. In other words,

p x2 is x if x

is positive, or, if x is negative, we make x positive - that is, p

x2 = |x |, the absolute value of x . So from x2 = 3, we ‘take the square root’ of both sides of the equation to get

p x2 =

p 3. This

simplifies to |x | = p

3, which by Theorem 0.3 is equivalent to x = p

3 or x = � p

3. Replacing the ‘3’ in the previous argument with ‘c,’ gives the general result.

1While our discussion in this section departs from factoring, we’ll see in Chapter 3 that the same correspondence between factoring and solving equations holds whether or not the polynomial factors over the integers.

84 Prerequisites

As you might expect, Extracting Square Roots can be applied to more complicated equations. Consider the equation below. We can solve it by Extracting Square Roots provided we first isolate the perfect square quantity:

2 ✓

x + 3 2

◆2 � 15

2 = 0

2 ✓

x + 3 2

◆2 =

15 2

Add 15 2

x + 3 2

◆2 =

15 4

Divide by 2

x + 3 2

= ± r

15 4

Extract Square Roots

x + 3 2

= ± p

15 2

Property of Radicals

x = �3 2 ±

p 15 2

Subtract 3 2

x = �3 ± p

15 2

Add fractions

Let’s return to the equation 2x2 + 6x � 3 = 0 from the beginning of the section. We leave it to the reader to show that

2 ✓

x + 3 2

◆2 � 15

2 = 2x2 + 6x � 3.

(Hint: Expand the left side.) In other words, we can solve 2x2 + 6x � 3 = 0 by transforming into an equivalent equation. This process, you may recall, is called ‘Completing the Square.’ We’ll revisit Completing the Square in Section 2.3 in more generality and for a different purpose but for now we revisit the steps needed to complete the square to solve a quadratic equation.

Solving Quadratic Equations: Completing the Square To solve a quadratic equation AX 2 + BX + C = 0 by Completing the Square:

1. Subtract the constant C from both sides.

2. Divide both sides by A, the coefficient of X 2. (Remember: A 6= 0.)

3. Add ⇣

B 2A

⌘2 to both sides of the equation. (That’s half the coefficient of X , squared.)

4. Factor the left hand side of the equation as ⇣

X + B2A ⌘2

.

5. Extract Square Roots.

6. Subtract B2A from both sides.

0.7 Quadratic Equations 85

To refresh our memories, we apply this method to solve 3x2 � 24x + 5 = 0:

3x2 � 24x + 5 = 0 3x2 � 24x = �5 Subtract C = 5

x2 � 8x = �5 3

Divide by A = 3

x2 � 8x + 16 = �5 3

+ 16 Add ⇣

B 2A

⌘2 = (�4)2 = 16

(x � 4)2 = 43 3

Factor: Perfect Square Trinomial

x � 4 = ± r

43 3

Extract Square Roots

x = 4 ± r

43 3

Add 4

At this point, we use properties of fractions and radicals to ‘rationalize’ the denominator:2 r

43 3

= r

43 · 3 3 · 3 =

p 129p

9 = p

129 3

We can now get a common (integer) denominator which yields:

x = 4 ± r

43 3

= 4 ± p

129 3

= 12 ±

p 129

3

The key to Completing the Square is that the procedure always produces a perfect square trino- mial. To see why this works every single time, we start with AX 2 + BX + C = 0 and follow the procedure:

AX 2 + BX + C = 0 AX 2 + BX = �C Subtract C

X 2 + BX A

= �C A

Divide by A 6= 0

X 2 + BX A

+ ✓

B 2A

◆2 = �C

A + ✓

B 2A

◆2 Add

B 2A

◆2

(Hold onto the line above for a moment.) Here’s the heart of the method - we need to show that

X 2 + BX A

+ ✓

B 2A

◆2 = ✓

X + B 2A

◆2

To show this, we start with the right side of the equation and apply the Perfect Square Formula from Theorem 0.7

X + B 2A

◆2 = X 2 + 2

B 2A

X + ✓

B 2A

◆2 = X 2 +

BX A

+ ✓

B 2A

◆2 X

2Recall that this means we want to get a denominator with rational (more specifically, integer) numbers.

86 Prerequisites

With just a few more steps we can solve the general equation AX 2 + BX + C = 0 so let’s pick up the story where we left off. (The line on the previous page we told you to hold on to.)

X 2 + BX A

+ ✓

B 2A

◆2 = �C

A + ✓

B 2A

◆2

X + B 2A

◆2 = �C

A +

B2

4A2 Factor: Perfect Square Trinomial

X + B 2A

◆2 = �4AC

4A2 +

B2

4A2 Get a common denominator

X + B 2A

◆2 =

B2 � 4AC 4A2

Add fractions

X + B 2A

= ± r

B2 � 4AC 4A2

Extract Square Roots

X + B 2A

= ± p

B2 � 4AC 2A

Properties of Radicals

X = � B 2A

± p

B2 � 4AC 2A

Subtract B 2A

X = �B ±

p B2 � 4AC 2A

Add fractions.

Lo and behold, we have derived the legendary Quadratic Formula!

Theorem 0.9. Quadratic Formula: The solution to AX 2 + BX + C = 0 with A 6= 0 is:

X = �B ±

p B2 � 4AC 2A

We can check our earlier solutions to 2x2 + 6x � 3 = 0 and 3x2 � 24x + 5 = 0 using the Quadratic Formula. For 2x2 + 6x � 3 = 0, we identify A = 2, B = 6 and C = �3. The quadratic formula gives:

x = �6 ±

p

62 � 4(2)(�3) 2(2)

� �6 ± p

36 + 24 4

= �6 ±

p 60

4

Using properties of radicals ( p

60 = 2 p

15), this reduces to 2(�3± p

15) 4 =

�3± p

15 2 . We leave it to the

reader to show these two answers are the same as �3± p

15 2 , as required.

3

For 3x2 � 24x + 5 = 0, we identify A = 3, B = �24 and C = 5. Here, we get:

x = �(�24) ±

p

(�24)2 � 4(3)(5) 2(3)

= 24 ±

p 516

6

Since p

516 = 2 p

129, this reduces to x = 12± p

129 3 .

3Think about what �(3 ± p

15) is really telling you.

0.7 Quadratic Equations 87

It is worth noting that the Quadratic Formula applies to all quadratic equations - even ones we could solve using other techniques. For example, to solve 2x2 + 5x �3 = 0 we identify A = 2, B = 5 and C = �3. This yields:

x = �5 ±

p

52 � 4(2)(�3) 2(2)

= �5 ±

p 49

4 = �5 ± 7

4

At this point, we have x = �5+74 = 1 2 and x =

�5�7 4 =

�12 4 = �3 - the same two answers we obtained

factoring. We can also use it to solve x2 = 3, if we wanted to. From x2 � 3 = 0, we have A = 1, B = 0 and C = �3. The Quadratic Formula produces

x = �0 ±

p

02 � 4(1)(3) 2(1)

= ± p

12 2

= ±2 p

3 2

= ± p

3

As this last example illustrates, while the Quadratic Formula can be used to solve every quadratic equation, that doesn’t mean it should be used. Many times other methods are more efficient. We now provide a more comprehensive approach to solving Quadratic Equations.

Strategies for Solving Quadratic Equations

• If the variable appears in the squared term only, isolate it and Extract Square Roots.

• Otherwise, put the nonzero terms on one side of the equation so that the other side is 0.

– Try factoring. – If the expression doesn’t factor easily, use the Quadratic Formula.

The reader is encouraged to pause for a moment to think about why ‘Completing the Square’ doesn’t appear in our list of strategies despite the fact that we’ve spent the majority of the section so far talking about it.4 Let’s get some practice solving quadratic equations, shall we?

Example 0.7.1. Find all real number solutions to the following equations.

1. 3 � (2w � 1)2 = 0 2. 5x � x(x � 3) = 7 3. (y � 1)2 = 2 � y + 2 3

4. 5(25 � 21x) = 59 4

� 25x2 5. �4.9t2 + 10t p

3 + 2 = 0 6. 2x2 = 3x4 � 6

Solution.

1. Since 3� (2w �1)2 = 0 contains a perfect square, we isolate it first then extract square roots: 3 � (2w � 1)2 = 0

3 = (2w � 1)2 Add (2w � 1)2 ± p

3 = 2w � 1 Extract Square Roots 1 ±

p 3 = 2w Add 1

1 ± p

3 2

= w Divide by 2

4Unacceptable answers include “Jeff and Carl are mean” and “It was one of Carl’s Pedantic Rants”.

88 Prerequisites

We find our two answers w = 1± p

3 2 . The reader is encouraged to check both answers by

substituting each into the original equation.5

2. To solve 5x � x(x � 3) = 7, we begin performing the indicated operations and getting one side equal to 0.

5x � x(x � 3) = 7 5x � x2 + 3x = 7 Distribute

�x2 + 8x = 7 Gather like terms �x2 + 8x � 7 = 0 Subtract 7

At this point, we attempt to factor and find �x2 + 8x � 7 = (x � 1)(�x + 7). Using the Zero Product Property, we get x � 1 = 0 or �x + 7 = 0. Our answers are x = 1 or x = 7, both of which are easy to check.

3. Even though we have a perfect square in (y � 1)2 = 2 � y+23 , Extracting Square Roots won’t help matters since we have a y on the other side of the equation. Our strategy here is to perform the indicated operations (and clear the fraction for good measure) and get 0 on one side of the equation.

(y � 1)2 = 2 � y + 2 3

y2 � 2y + 1 = 2 � y + 2 3

Perfect Square Trinomial

3(y2 � 2y + 1) = 3 ✓

2 � y + 2 3

Multiply by 3

3y2 � 6y + 3 = 6 � 3 ✓

y + 2 3

Distribute

3y2 � 6y + 3 = 6 � (y + 2) 3y2 � 6y + 3 � 6 + (y + 2) = 0 Subtract 6, Add (y + 2)

3y2 � 5y � 1 = 0

A cursory attempt at factoring bears no fruit, so we run this through the Quadratic Formula with A = 3, B = �5 and C = �1.

y = �(�5) ±

p

(�5)2 � 4(3)(�1) 2(3)

y = 5 ±

p 25 + 12 6

y = 5 ±

p 37

6

Since 37 is prime, we have no way to reduce p

37. Thus, our final answers are y = 5± p

37 6 .

The reader is encouraged to supply the details of the challenging verification of the answers. 5It’s excellent practice working with radicals fractions so we really, really want you to take the time to do it.

0.7 Quadratic Equations 89

4. We proceed as before; our aim is to gather the nonzero terms on one side of the equation.

5(25 � 21x) = 59 4

� 25x2

125 � 105x = 59 4

� 25x2 Distribute

4(125 � 105x) = 4 ✓

59 4

� 25x2 ◆

Multiply by 4

500 � 420x = 59 � 100x2 Distribute

500 � 420x � 59 + 100x2 = 0 Subtract 59, Add 100x2

100x2 � 420x + 441 = 0 Gather like terms

With highly composite numbers like 100 and 441, factoring seems inefficient at best,6 so we apply the Quadratic Formula with A = 100, B = �420 and C = 441:

x = �(�420) ±

p

(�420)2 � 4(100)(441) 2(100)

= 420 ±

p 176000 � 176400

200

= 420 ±

p 0

200

= 420 ± 0

200

= 420 200

= 21 10

To our surprise and delight we obtain just one answer, x = 2110 .

5. Our next equation �4.9t2 + 10t p

3 + 2 = 0, already has 0 on one side of the equation, but with coefficients like �4.9 and 10

p 3, factoring with integers is not an option. We could make

things a bit easier on the eyes by clearing the decimal (by multiplying through by 10) to get �49t2 +100t

p 3+20 = 0 but we simply cannot rid ourselves of the irrational number

p 3. The

Quadratic Formula is our only recourse. With A = �49, B = 100 p

3 and C = 20 we get:

6This is actually the Perfect Square Trinomial (10x � 21)2.

90 Prerequisites

t = �100

p 3 ±

q

(100 p

3)2 � 4(�49)(20) 2(�49)

= �100

p 3 ±

p 30000 + 3920

�98

= �100

p 3 ±

p 33920

�98

= �100

p 3 ± 8

p 530

�98

= 2(�50

p 3 ± 4

p 530)

2(�49)

= �50

p 3 ± 4

p 530

�49 Reduce

= �(�50

p 3 ± 4

p 530)

49 Properties of Negatives

= 50

p 3 ⌥ 4

p 530

49 Distribute

You’ll note that when we ‘distributed’ the negative in the last step, we changed the ‘±’ to a ‘⌥.’ While this is technically correct, at the end of the day both symbols mean ‘plus or minus’,7

so we can write our answers as t = 50 p

3±4 p

530 49 . Checking these answers are a true test of

arithmetic mettle.

6. At first glance, the equation 2x2 = 3x4 � 6 seems misplaced. The highest power of the variable x here is 4, not 2, so this equation isn’t a quadratic equation - at least not in terms of the variable x . It is, however, an example of an equation that is quadratic ‘in disguise.’8 We introduce a new variable u to help us see the pattern - specifically we let u = x2. Thus u2 = (x2)2 = x4. So in terms of the variable u, the equation 2x2 = 3x4 � 6 is 2u = 3u2 � 6. The latter is a quadratic equation, which we can solve using the usual techniques:

2u = 3u2 � 6 0 = 3u2 � 2u � 6 Subtract 2u

After a few attempts at factoring, we resort to the Quadratic Formula with A = 3, B = �2,

7There are instances where we need both symbols, however. For example, the Sum and Difference of Cubes Formulas (page 71) can be written as a single formula: a3 ± b3 = (a ± b)(a2 ⌥ ab + b2). In this case, all of the ‘top’ symbols are read to give the sum formula; the ‘bottom’ symbols give the difference formula.

8More formally, quadratic in form. Carl likes ‘Quadratics in Disguise’ since it reminds him of the tagline of one of his beloved childhood cartoons and toy lines.

0.7 Quadratic Equations 91

C = �6 and get:

u = �(�2) ±

p

(�2)2 � 4(3)(�6) 2(3)

= 2 ±

p 4 + 72 6

= 2 ±

p 76

6

= 2 ±

p 4 · 19

6

= 2 ± 2

p 19

6 Properties of Radicals

= 2(1 ±

p 19)

2(3) Factor

= 1 ±

p 19

3 Reduce

We’ve solved the equation for u, but what we still need to solve the original equation9 - which means we need to find the corresponding values of x . Since u = x2, we have two equations:

x2 = 1 +

p 19

3 or x2 =

1 � p

19 3

We can solve the first equation by extracting square roots to get x = ± q

1+ p

19 3 . The second

equation, however, has no real number solutions because 1� p

19 3 is a negative number. For

our final answers we can rationalize the denominator10 to get:

x = ±

s

1 + p

19 3

= ±

s

1 + p

19 3

· 3 3

= ± p

3 + 3 p

19 3

As with the previous exercise, the very challenging check is left to the reader.

Our last example above, the ‘Quadratic in Disguise’, hints that the Quadratic Formula is applicable to a wider class of equations than those which are strictly quadratic. We give some general guidelines to recognizing these beasts in the wild on the next page.

9Or, you’ve solved the equation for ‘you’ (u), now you have to solve it for your instructor (x). 10We’ll say more about this technique in Section 0.9.

92 Prerequisites

Identifying Quadratics in Disguise An equation is a ‘Quadratic in Disguise’ if it can be written in the form: AX 2m + BX m + C = 0. In other words:

• There are exactly three terms, two with variables and one constant term.

• The exponent on the variable in one term is exactly twice the variable on the other term.

To transform a Quadratic in Disguise to a quadratic equation, let u = X m so u2 = (X m)2 = X 2m. This transforms the equation into Au2 + Bu + C = 0.

For example, 3x6 � 2x3 + 1 = 0 is a Quadratic in Disguise, since 6 = 2 · 3. If we let u = x3, we get u2 = (x3)2 = x6, so the equation becomes 3u2 � 2u + 1 = 0. However, 3x6 � 2x2 + 1 = 0 is not a Quadratic in Disguise, since 6 6= 2 · 2. The substitution u = x2 yields u2 = (x2)2 = x4, not x6 as required. We’ll see more instances of ‘Quadratics in Disguise’ in later sections.

We close this section with a review of the discriminant of a quadratic equation as defined below.

Definition 0.16. The Discriminant: Given a quadratic equation AX 2 + BX + C = 0, the quantity B2 � 4AC is called the discriminant of the equation.

The discriminant is the radicand of the square root in the quadratic formula:

X = �B ±

p B2 � 4AC 2A

It discriminates between the nature and number of solutions we get from a quadratic equation. The results are summarized below.

Theorem 0.10. Discriminant Theorem: Given a Quadratic Equation AX 2 + BX + C = 0, let D = B2 � 4AC be the discriminant.

• If D > 0, there are two distinct real number solutions to the equation.

• If D = 0, there is one repeated real number solution.

Note: ‘Repeated’ here comes from the fact that ‘both’ solutions �B±02A reduce to � B 2A .

• If D < 0, there are no real solutions.

For example, x2 + x � 1 = 0 has two real number solutions since the discriminant works out to be (1)2 � 4(1)(�1) = 5 > 0. This results in a ±

p 5 in the Quadratic Formula, generating two different

answers. On the other hand, x2 + x + 1 = 0 has no real solutions since here, the discriminant is (1)2 � 4(1)(1) = �3 < 0 which generates a ±

p �3 in the Quadratic Formula. The equation

x2 + 2x + 1 = 0 has discriminant (2)2 � 4(1)(1) = 0 so in the Quadratic Formula we get a ± p

0 = 0 thereby generating just one solution. More can be said as well. For example, the discriminant of 6x2 � x � 40 = 0 is 961. This is a perfect square,

p 961 = 31, which means our solutions are

0.7 Quadratic Equations 93

rational numbers. When our solutions are rational numbers, the quadratic actually factors nicely. In our example 6x2 � x � 40 = (2x + 5)(3x � 8). Admittedly, if you’ve already computed the discriminant, you’re most of the way done with the problem and probably wouldn’t take the time to experiment with factoring the quadratic at this point – but we’ll see another use for this analysis of the discriminant in the next section.11

11Specifically in Example 0.8.1.

94 Prerequisites

0.7.1 Exercises

In Exercises 1 - 21, find all real solutions. Check your answers, as directed by your instructor.

1. 3 ✓

x � 1 2

◆2 =

5 12

2. 4 � (5t + 3)2 = 3 3. 3(y2 � 3)2 � 2 = 10

4. x2 + x � 1 = 0 5. 3w2 = 2 � w 6. y (y + 4) = 1

7. z 2

= 4z2 � 1 8. 0.1v2 + 0.2v = 0.3 9. x2 = x � 1

10. 3 � t = 2(t + 1)2 11. (x � 3)2 = x2 + 9 12. (3y � 1)(2y + 1) = 5y

13. w4 + 3w2 � 1 = 0 14. 2x4 + x2 = 3 15. (2 � y )4 = 3(2 � y )2 + 1

16. 3x4 + 6x2 = 15x3 17. 6p + 2 = p2 + 3p3 18. 10v = 7v3 � v5

19. y2 � p

8y = p

18y � 1 20. x2 p

3 = x p

6 + p

12 21. v2

3 =

v p

3 2

+ 1

In Exercises 22 - 27, find all real solutions and use a calculator to approximate your answers, rounded to two decimal places.

22. 5.542 + b2 = 36 23. ⇡r2 = 37 24. 54 = 8r p

2 + ⇡r2

25. �4.9t2 + 100t = 410 26. x2 = 1.65(3 � x)2 27. (0.5+2A)2 = 0.7(0.1�A)2

In Exercises 28 - 30, use Theorem 0.3 along with the techniques in this section to find all real solutions to the following.

28. |x2 � 3x | = 2 29. |2x � x2| = |2x � 1| 30. |x2 � x + 3| = |4 � x2|

31. Prove that for every nonzero number p, x2 + xp + p2 = 0 has no real solutions.

32. Solve for t : �1 2

gt2 + vt + h = 0. Assume g > 0, v � 0 and h � 0.

0.7 Quadratic Equations 95

0.7.2 Answers

1. x = 3 ±

p 5

6 2. t = �4

5 ,�2

5 3. y = ±1, ±

p 5

4. x = �1 ±

p 5

2 5. w = �1, 2

3 6. y = �2 ±

p 5

7. z = 1 ±

p 65

16 8. v = �3, 1 9. No real solution.

10. t = �5 ±

p 33

4 11. x = 0 12. y =

2 ± p

10 6

13. w = ± rp

13 � 3 2

14. x = ±1 15. y = 4 ± p

6 + 2 p

13 2

16. x = 0, 5 ±

p 17

2 17. p = �1

3 ,±

p 2 18. v = 0,±

p 2,±

p 5

19. y = 5 p

2 ± p

46 2

20. x = p

2 ± p

10 2

21. v = � p

3 2

, 2 p

3

22. b = ± p

13271 50

⇡ ±2.30 23. r = ± r

37 ⇡

⇡ ±3.43

24. r = �4

p 2 ±

p 54⇡ + 32

⇡ , r ⇡ �6.32, 2.72 25. t = 500 ± 10

p 491

49 , t ⇡ 5.68, 14.73

26. x = 99 ± 6

p 165

13 , x ⇡ 1.69, 13.54 27. A = �107 ± 7

p 70

330 , A ⇡ �0.50,�0.15

28. x = 1, 2, 3 ±

p 17

2 29. x = ±1, 2 ±

p 3 30. x = �1

2 , 1, 7

31. The discriminant is: D = p2 � 4p2 = �3p2 < 0. Since D < 0, there are no real solutions.

32. t = v ±

p

v2 + 2gh g

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Maths Master
Solution Provider
Buy Coursework Help
Quick Mentor
Chartered Accountant
Academic Mentor
Writer Writer Name Offer Chat
Maths Master

ONLINE

Maths Master

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$48 Chat With Writer
Solution Provider

ONLINE

Solution Provider

After reading your project details, I feel myself as the best option for you to fulfill this project with 100 percent perfection.

$27 Chat With Writer
Buy Coursework Help

ONLINE

Buy Coursework Help

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$46 Chat With Writer
Quick Mentor

ONLINE

Quick Mentor

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$18 Chat With Writer
Chartered Accountant

ONLINE

Chartered Accountant

I am an experienced researcher here with master education. After reading your posting, I feel, you need an expert research writer to complete your project.Thank You

$26 Chat With Writer
Academic Mentor

ONLINE

Academic Mentor

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$34 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Math Tutors - Wjec level 3 criminology - Guest Speaker #1 Reflection - Lyell mcewin hospital emergency department expansion - Marketing communications discovery creation and conversations ebook - Marlowe park medical centre - Lab 7 osmosis answers - Shareholder analysis - Moon pearls chinese herbs - Science - Metropolis tokyo free magazine - Why is copper nitrate solution blue - Stilbene dibromide stereoisomers - 36/6 as a mixed number - Newark road surgery lincoln - Briggs and stratton charging system diagram - Essay - Johnny cash hurt remix eminem - E eyes com bank just issued - Harley davidson code of ethics - Practicum Project Progress - Ib math studies sets and venn diagrams worksheets - How to make a timetable on excel - Increasing supply chain transparency only magnifies the bullwhip effect - Protection of Human Subjects in Research - How would you change your resume using sfia - OT Dis 1 - The great dictator speech inception - Long-term and short-term problems - Rio salado chm 130 midterm answers - Pinot meow shark tank update gazette - Today learning exp 105 - Togaf architecture definition document example - Annabelle edgar allan poe - Nucleus 6 battery charger - Enable silverlight in internet explorer - Brunel university admission requirements - Annotated Bibliography & NRP - What are the keys on a glockenspiel made of - Econ 101 offline homework 2 - Machine eye clinic warwick hospital - Average height of a warehouse - Mil std 1553 designer's guide - Connected but alone ted talk essay - Water right sanitizer plus - Patience taught by nature elizabeth barrett browning - Words that sound the same but have different meanings - Gf - Open market operations occur when the reserve bank of australia - Discussion - Dsn trials and tribble ations review - 2.10 module project assessment world history - Report for experiment 15 forming and naming ionic compounds answers - A level biology exam questions by topic cie - Elm view nursing home serious case review - Deutsch connector how to - English Composition II Essay - 3572 series mortice lock - I am a volunteer poem - Biology discussion due in 18 hours - A disorder caused by hyposecretion from the thyroid gland is - How to develop and update policies successfully - Mcgraw hill financial statements - Jurassic world alive error 10029 - Bernoulli effect in speech - Strategic audit report example - Three paradigms of nursing human needs interactive and unitary process - Healthy people - After a person is arrested, they go through several levels of proceedings before a case is adjudicated. These phases are: - E1-4 Main discussion min 250 word each. due 8/10 - Msds sheet for wd-40 - Read Chapter 4 and 5 and complete the review questions. - Cell graphic organizer answers biology corner - Southwind boat for sale perth - How to start a gothic horror story - I challenge the warmest advocate for reconciliation meaning - Acca f5 pass rates - Father sky mother earth kath walker - Research framework - Covington city public schools - Exploratory descriptive explanatory or evaluative research - Edmund emil kemper ii - Ms dos 3.2 download - Beach petroleum nl v kennedy - Race class and gender an anthology 10th edition - What is doctor seuss real name - How to write a tax memo - Access to health rebecca j donatelle pdf - Team project - Limiting reagent lab baking soda vinegar answers - How to make genogram on microsoft word - Read the pdf and answer the questions - St matthews hospital northampton - Hutton v west cork railway summary - Access - How did erp help improve business operations at shell - Bell rock loop track - How to spot a witch by adam goodheart worksheet - Macroeconomic - Strategies to restructure a diversified company's business lineup involve