Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Umea university sweden world ranking

22/10/2021 Client: muhammad11 Deadline: 2 Day

ORIGINAL ARTICLE

Chronic disease, risk factors and disability in adults aged 50 and above living with and without HIV: findings from the Wellbeing of Older People Study in Uganda

Joseph O. Mugisha1,2*, Enid J. Schatz2, Madeleine Randell3, Monica Kuteesa1, Paul Kowal4,5, Joel Negin3 and Janet Seeley1,6

1MRC/UVRI, Uganda Research Unit on AIDS, Uganda; 2Department of Health Sciences, University of Missouri Columbia, Missouri, USA; 3School of Public Health, University of Sydney, Australia; 4World Health Organization, Study on global AGEing and adult health, Geneva, Switzerland; 5Research Centre for Gender, Health and Ageing, University of Newcastle, Australia; 6London School of Hygiene and Tropical Medicine, London UK

Background: Data on the prevalence of chronic conditions, their risk factors, and their associations with disability in older people living with and without HIV are scarce in sub-Saharan Africa.

Objectives: In older people living with and without HIV in sub-Saharan Africa: 1) to describe the prevalence of chronic conditions and their risk factors and 2) to draw attention to associations between chronic

conditions and disability.

Methods: Cross-sectional individual-level survey data from people aged 50 years and over living with and without HIV were analyzed from three study sites in Uganda. Diagnoses of chronic conditions were made

through self-report, and disability was determined using the WHO Disability Assessment Schedule

(WHODAS). We used ordered logistic regression and calculated predicted probabilities to show differences

in the prevalence of multiple chronic conditions across HIV status, age groups, and locality. We used linear

regression to determine associations between chronic conditions and the WHODAS.

Results: In total, 471 participants were surveyed; about half the respondents were living with HIV. The prevalence of chronic obstructive pulmonary disease and eye problems (except for those aged 60�69 years) was higher in the HIV-positive participants and increased with age. The prevalence of diabetes and angina was

higher in HIV-negative participants. The odds of having one or more compared with no chronic conditions were

higher in women (OR 1.6, 95% CI 1.1�2.3) and in those aged 70 years and above (OR 2.1, 95% CI 1.2�3.6). Sleep problems (coefficient 14.2, 95% CI 7.3�21.0) and depression (coefficient 9.4, 95% CI 1.2�17.0) were strongly associated with higher disability scores.

Conclusion: Chronic conditions are common in older adults and affect their functioning. Many of these conditions are not currently addressed by health services in Uganda. There is a need to revise health care

policy and practice in Uganda to consider the health needs of older people, particularly as the numbers of

people living into older age with HIV and other chronic conditions are increasing.

Keywords: Africa; aging; aging disability; HIV/AIDS; older adults; non-communicable diseases; Uganda

Responsible Editor: Jennifer Stewart Williams, Umeå University, Sweden.

*Correspondence to: Joseph O. Mugisha, MRC/UVRI, Plot 51�59, Nakiwogo Road, Entebbe, Uganda, Email: joseph.mugisha@mrcuganda.org

Received: 25 January 2016; Revised: 27 April 2016; Accepted: 27 April 2016; Published: 24 May 2016

Introduction Chronic diseases are illnesses or conditions that require

ongoing medical attention and affect a person’s daily life

(1). Chronic diseases include cancers, cardiovascular

diseases, chronic respiratory diseases, diabetes, hyperten-

sion, mental disorders, and stroke. Other chronic impair-

ments that commonly affect people include arthritis;

rheumatism; and dental, vision, stomach, and intestinal

problems (2). In African countries, improved access to

antiretroviral treatment (ART) is increasing survival for

those with the human immunodeficiency virus (HIV).

Consequently, HIV is now considered a chronic condition

in many settings (3).

With shifts in the global burden of disease, chronic

diseases represent a substantial proportion of illnesses

even in low- and middle-income countries (LMICs) (4).

Global Health Action �

Global Health Action 2016. # 2016 Joseph O. Mugisha et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

1

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098 (page number not for citation purpose)

http://creativecommons.org/licenses/by/4.0/
http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
Few studies, however, have used individual-level data

to elucidate the prevalence of chronic conditions, risk

factors, and disability associated with chronic diseases in

older people in LMICs, and such research is particularly

scarce in sub-Saharan Africa. Comprehensive studies on

chronic diseases in LMICs primarily have concentrated

on younger and middle-aged people (5�10) with relatively few focusing on older adults (2, 9, 11, 12).

In sub-Saharan Africa, the number and proportion

of older people is increasing and is projected to continue to

grow in coming decades (13, 14). This makes it parti-

cularly important to understand how chronic disease

impacts on older Africans’ lives. As African populations

age, the prevalence of individuals with chronic conditions

in these settings is likely to increase. In Uganda, for

example, the population of older people has continued

to grow rapidly (15). In addition, the number of older

people living with HIV in Uganda is also increasing (16) in

line with a global trend (17�19). A number of studies have been conducted in sub-

Saharan Africa on chronic conditions in adults (7�9, 20�25). However, few provide information on concurrent chronic conditions, including HIV (23), and fewer still

have simultaneously examined chronic diseases in older

people living with and without HIV (26). In Uganda, as

well, there are few data on health differences in chronic

conditions between older persons living with and without

HIV (27�29). Chronic diseases can affect people of all age groups, but

they are more common and more likely to have negative

consequences in older adults. A 2005 study of mortality

and the burden of disease predicted an increase in deaths

for all ages worldwide due to chronic diseases (excluding

HIV) from 35 million deaths in 2005 to 41 million deaths

in 2015 (30). Nearly 60% of the deaths in each year are

estimated to occur among those aged 70-plus. Research

from southern Africa shows that chronic diseases (not

including HIV) are more prevalent among those aged

50-plus compared to those aged 18�49 (12). Another study in South Africa showed that there were more chronic

conditions (excluding HIV) in later older age (65-plus)

than early older age (ages 50�65) (9). With the exception of HIV, many chronic diseases share

common risk factors. These include excessive alcohol use,

tobacco use, unhealthy diets, and physical inactivity (31).

Current health behaviors, as well as the accumulated

impact of a lifetime of harmful health behaviors, con-

tribute to the higher likelihood of contracting a chronic

condition in older age (32, 33). Because the majority

of these risk factors are related to individual health

behaviors, most are potentially amenable to behavioral

interventions (34).

Using a unique dataset from Uganda, this paper

describes the prevalence of chronic diseases, including

angina; arthritis; chronic obstructive pulmonary disease

(COPD); depression; diabetes mellitus; and hypertension,

stroke, and vision problems, in older people living

with and without HIV. We also describe the prevalence

of related risk factors and association between chronic

disease and disability, using the World Health Organiza-

tion Disability Assessment Schedule (WHODAS 2.0) to

measure disability (35). This paper adds to the limited

body of literature on the prevalence and risk factors of

chronic conditions and how these impact on disability

in older Africans living with and without HIV.

Methods Data for this analysis came from the second wave of the

longitudinal World Health Organization Study on global

AGEing and adult health (SAGE)-Wellbeing of Older

People Study (WOPS). The SAGE-WOPS HIV study in

Uganda was implemented in people aged 50 plus. To date,

two waves of data are available: the first wave (WOPS1)

conducted in 2009�2010 and the second wave (WOPS2) conducted in 2012�2013. Details of the initial WOPS recruitment are described elsewhere (26). Although data

from two waves of WOPS are available, only data from

WOPS2 are analyzed here because of inconsistencies in

available variables across the two waves. We therefore

present findings on a fuller set of more recent variables

rather than longitudinal data on a limited set of variables.

Interviews were conducted in three sites on the shores of

Lake Victoria � in the Kalungu and Masaka districts and another in the Wakiso District, near Entebbe. The study

setting, study population, and data collection are also

described elsewhere (26, 36). Briefly, the WOPS1 sample

consisted of 510 older people (61.2% female, mean age

65 and age range 50�96 years). These included 1) older persons who were living with HIV but not yet on ART;

2) older persons living with HIV and on ART for at least

1 year; 3) older persons who had a child living with HIV;

4) older persons who had a child who died of AIDS-related

illness; and 5) older persons who were not HIV-positive

themselves but had not lost a child due to HIV infection.

During WOPS2, we re-interviewed those respondents

who were still living in the area; 148 respondents were

lost to follow-up (these included 67 who had died, 25 who

emigrated from the study area, 17 who were found but

refused to participate, 9 who were too sick to participate,

4 who had travelled on the day of the interviews, 4 who

were too busy to participate in the interviews, and 22 who

could not be located). The follow-up rate was over 70%.

In WOPS2, we recruited an additional 100 older people

living with HIV attending the AIDS Support Organiza-

tion (TASO), a non-governmental organization (NGO) in

Masaka town, close to the Kalungu District site. All the

new recruits were randomly selected from older people

attending TASO. These additional recruits increased the

number of people living with HIV in the cohort. In order

to avoid misclassification of the study groups, all older

Joseph O. Mugisha et al.

2 (page number not for citation purpose)

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
people who were HIV negative in WOPS1 were retested

for HIV using the Uganda Ministry of Health algorithms

for rapid HIV testing (37). The sample in this study is

stratified by HIV status between all those who were living

with HIV either in WOPS1 or WOPS2, and those who

were HIV negative in WOPS1 and remained so at the time

of testing in WOPS2.

Data collection

Study participants were either interviewed from home or

from a central hub (a central location in their village),

where a house was rented for survey activities. The

interviews were conducted by trained interviewers using

a validated questionnaire. After conducting the interviews,

the interviewers measured weight, height, blood pressure,

grip strengths, walking speed, and conducted a visual acuity

test. The WOPS questionnaire and other data collection

instruments were adapted from the WHO SAGE (38). All

instruments were pretested and piloted prior to use (26).

Variables

The components of the study questionnaire analyzed in

this paper include:

1. Sociodemographic characteristics: age, sex, marital

status, occupation (work status), education level,

and household assets.

2. Risk factors: smoking, alcohol use, stressful events,

sleep disorders, and body mass index (BMI).

3. Self-reported chronic conditions: self-reported diag-

noses of chronic conditions (including angina, ar-

thritis, cataract/eye sight problems, COPD, depression,

diabetes mellitus, hypertension, and stroke).

4. Objective measurements: weight, height, visual acuity

(using the Snellen charts), and blood pressure, mea-

sured three times in a sitting position.

Information from the interviews and assessments was

used to describe health states that included diagnoses,

risk factors, and impairments as described below. Dis-

ability was assessed using the 12-item version of WHO-

DAS 2.0 questionnaire (35).

Diagnoses

Hypertension

For all study participants, systolic and diastolic blood

pressures were measured three times with participants

in a sitting position using a Boso Medistar-S-wrist

blood pressure monitor. An average blood pressure

for the three readings was computed and used in the

analysis. Hypertension was defined according to the

World Health Organization (WHO) criteria (systolic

blood pressure ]140 mmHg and/or diastolic blood pres-

sure ]90 mmHg) (39).

For the conditions listed below, respondents were

asked a range of questions on diagnosis and symptoma-

tology for these chronic conditions, and their responses

determined the diagnosis used here.

Diabetes mellitus, COPD, and eyesight problems/

cataracts For this analysis, prevalence estimates were based on

the self-report of a doctor’s diagnosis. Participants were

asked the following questions: Have you ever been told by

a doctor or a health worker that you have [condition]?

If yes, were you started on treatment and are you still on

treatment?

Stroke and angina

The prevalence for the conditions of stroke and angina

was determined through algorithms using symptom-

reporting (40, 41).

Depression

A diagnosis of depression was based on a diagnostic

algorithm, with participant responses scored using the

International Neuropsychiatric interview (MINI) criteria

(42�44). The criteria used for determining depression were based on previous work using the MINI in Uganda

(45, 46). The following screening questions for a major

depressive episode were asked. For the past 2 weeks, were

you depressed or down, most of the day, nearly every day?

In the past 2 weeks, were you much less interested in most

things or much less able to enjoy the things you used to

enjoy, most of the time? If participants answered yes to

these questions, they were asked a number of additional

questions to ascertain a major depressive episode.

Arthritis First, participants were asked if a health worker had ever

diagnosed or told them that they have arthritis. If the

answer was yes, they were asked about medication use or

any other treatment for arthritis in the last 2 weeks and

the last 12 months, and about symptoms, such as aching,

stiffness, or swelling around the joints that were not

related to injury and lasted for 1 month. Prevalence was

determined using a diagnostic algorithm (40).

HIV

During WOPS1, participants were selected in the five

categories described above. In order to avoid misclassifi-

cation during WOPS2, all participants seen in WOPS1

who were previously HIV negative were subjected to

repeat HIV testing. HIV testing was done using an algo-

rithm for HIV-1 testing using three HIV-1 rapid tests as

recommended by the Uganda Ministry of Health. The

algorithm for HIV rapid testing consisted of an initial

screening with the rapid test Determine HIV1/2. If the test

result was negative the participant was given a diagnosis

of HIV negative with no further rapid testing. If the test

result was positive, the sample was retested with the rapid

test HIV-1/2 Stat-Pak. If both tests gave a positive result

the participant was given a diagnosis of HIV positive with

Chronic conditions and disability in older people with and without HIV in Uganda

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098 3 (page number not for citation purpose)

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
no further rapid testing. If the tests gave discordant results

(i.e. one positive and the other negative), the sample was

further evaluated with the rapid test Uni-Gold Recombi-

nant HIV-1/2. For those samples assessed by all three

tests, two positive test results were interpreted as a positive

diagnosis. If two of the three tests gave negative results,

then the participant was diagnosed as being negative for

HIV. The two resulting categories for our analysis below

are those who tested HIV positive and those who tested

HIV negative.

Risk factors

Risk factors included tobacco use (if participants were

using tobacco, they were asked about the duration of

use), the method of tobacco consumption (whether they

were smoking or using chew or snuff), and the quantity

of tobacco consumed on each of the previous 7 days.

Alcohol use was determined by asking whether partici-

pants had ever or were currently consuming alcohol, the

duration of use, and the types of alcohol consumed. BMI

was determined from weight and height measurements

taken at the time of the survey. BMI was calculated by

dividing weight in kilograms by height in meters squared.

Disability

Questions necessary to generate the 12-item version of

WHODAS 2.0 were asked in the interview (47�49). These questions gather information across six domains: cogni-

tion, mobility, self-care, getting along, life activities, and

participation, asking about difficulty in these domains

during the 30 days preceding the interview. The possible

responses for each question were on a five-point scale:

‘none’, ‘mild’, ‘moderate’, ‘severe’, and ‘extreme or cannot

do’. The WHODAS 2.0 algorithm was used to compute

an overall score [range 0�100] for each respondent, with a higher score indicative of greater level of disability (47).

Ethical issues

Ethical approval to conduct this study was obtained from

the Uganda Virus Research Institute Science and Ethics

Committee, the Uganda National Council for Science

and Technology, and WHO’s Ethical Review Committee.

All participants gave a written and thumb-printed con-

sent to participate in the study. For non-literate partici-

pants, an impartial third party witnessed the entire

consent process and counter-signed the consent document

on which the participant had placed their thumb-print.

Statistical methods and data analysis

All analyses were conducted in Stata 13 (Stata Corp,

College Park, Tx, USA). We did not use any imputation

methods for missing data. However, the majority of

variables had two or fewer missing cases, only three

variables had more than 10 missing cases: BMI (11), stroke

(12), and current employment status (17). All descriptive

statistics and sample sizes are presented as un-weighted

values, with a p value of B0.05 considered statistically

significant (all p values are two-sided). We did not apply

sampling weights. The study sample was selected ran-

domly from lists of older people in the study population.

Analyses for descriptive statistics and risk factors were

stratified by HIV status for each of the following

characteristics: sociodemographic variables (mean age,

gender, locality, employment status, marital status, and

highest level of education), all past and current use of

tobacco, all past and current alcohol use, mean BMI,

sleep problems, and antiretroviral (ART) use-conditional

on HIV status. Analyses for chronic conditions (angina,

arthritis, diabetes, COPD, depression, eye problems,

hypertension, and stroke) were stratified by HIV status

and age group; chi-square statistics highlight whether

there were significant differences (1) across chronic con-

ditions by HIV status and age group, and (2) significant

differences between risk factors and HIV status. Median

differences in age and BMI were calculated for the two

respondent groups due to the data not being normally

distributed. Wilcoxon rank-sum analyses were used

to compare median differences in age and BMI for

the two respondent groups. We conducted an ordered

logistic regression and calculated predicted probabilities

to show the differences in the number of chronic con-

ditions across HIV status, gender, age group, and locality.

We defined the number of chronic conditions using an

algorithm that grouped respondents into three categories

being zero chronic conditions; one condition; or two or

more conditions. However, HIV was not considered a

chronic condition for the purposes of these counts. We

tested the proportional odds assumption for ordered

logistic regression. This assumes that the coefficients that

describe the relationship between the lowest versus all

higher categories of the response variable are the same as

those that describe the relationship between the next

lowest category and all higher categories. For this, we

used the omodel command in Stata and achieved a non-

significant result, meaning that there was no difference in

coefficients between models. For each respondent group,

mean WHODAS 2.0 scores were determined for each

chronic condition. T-tests were run within each respon-

dent group to compare WHODAS scores for those with

or without a chronic condition diagnosis.

Linear regression analyses were used to determine

existing associations between sociodemographic factors,

chronic conditions, and risk factors to WHODAS scores.

Univariate analyses first determined significant main

effects as well as interaction terms between HIV status

and other factors before a multiple linear regression with

these variables was undertaken. Although HIV was not

significant in the univariate analysis, we left it in the final

model as an a priori confounder together with age and

gender. In the linear regression modeling, HIV negative

was used as the reference category. Thus, compared to

Joseph O. Mugisha et al.

4 (page number not for citation purpose)

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
those who were HIV negative, HIV-positive individuals

were expected to have higher WHODAS scores (meaning

more disability). For all the univariate and multivariate

analyses, a significance level of 0.05 was used. Model fit

was assessed by examining residuals from the model. For

this analysis, a robust regression analysis was used.

Results

Sociodemographic characteristics of study

participants

Sociodemographic characteristics of the study popula-

tion by HIV status are provided in Table 1. In total, the

median age for the 471 participants was 63 (50�101). The majority of the sample was female (62.6%), widowed, still

working, and had less than primary school education.

About half of the study participants (51.8%) were HIV

positive. The HIV-positive respondents tended to be

younger. Only about 10% of older persons living with

HIV were aged 70 or older, whereas over half of the HIV-

negative sample was in the older age groups. Locality

differences by HIV status are in part due to the sampling

strategies.

Chronic conditions by HIV status Several differences in the percentage of individuals report-

ing chronic conditions, other than HIV, were evident

between the two respondent groups (Table 2). When

comparing by HIV status, the prevalence of COPD and

eye problems (except for those aged 60�69 years) were higher in the HIV-positive participants and prevalence of

diabetes and angina were higher in HIV-negative partici-

pants. When comparing across age groups within HIV

status, significant differences were present for eye pro-

blems and hypertension, which generally increased with

age, and multi-morbidity for which the prevalence was

higher in those with advanced age. The percentage of

people with COPD decreased with age for both groups,

with a higher starting point and a steeper decline in the

percentage for the HIV-positive group.

The odds of having at least one or one or more,

compared with no chronic conditions (other than HIV)

Table 1. Sociodemographic factors by HIV status

HIV�(N �244) HIV�(N �227)

Demographics N % N %

Gender

Male 97 39.8 79 34.8

Female 147 60.3 148 65.2

Age

50�59 135 55.3 33 14.5

60�69 82 33.6 69 30.4

70�79 23 9.4 82 36.1

80 � 4 1.6 43 18.9

Locality

Wakiso 64 26.2 105 46.3

Kalungu 73 29.9 120 52.9

Masaka 107 43.9 2 0.9

Marital status

Never married 3 1.2 9 4.0

Cohabitating/married 77 31.6 70 30.8

Divorced/separated 57 23.4 49 21.6

Widowed 107 43.9 99 43.6

Current employment status (n �241) (n �226)

Still working 213 88.4 166 73.5

No longer working 28 11.6 60 26.6

Education level (n �242) (n �212)

No formal education 35 14.5 53 23.5

Less than primary 96 39.7 113 50.0

Completed primary 43 17.8 16 7.1

Incomplete secondary 40 16.5 16 7.1

Completed secondary 15 6.2 14 6.2

Higher education than secondary 3 1.2 6 2.7

College/university or more 10 4.1 8 3.5

Chronic conditions and disability in older people with and without HIV in Uganda

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098 5 (page number not for citation purpose)

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
are shown in Table 3. The odds of having one or more than

one chronic condition were significantly higher in women

and the oldest age group. The predicted probabilities of

having one or more chronic conditions (other than HIV)

in Table 4 give similar findings. Predicted probabilities are

higher in women and in those aged 70 years and above.

Risk factors by HIV status

Several significant differences in the percentage of respon-

dents reporting or having risk factors for chronic conditions

(other than HIV) by HIV status were also evident (Table 5).

BMI was higher for HIV-negative respondents compared

to those who were HIV positive. This, however, may be a

result of HIV status rather than a risk factor for chronic

conditions. A higher proportion of HIV-negative respon-

dents said they currently use both tobacco and alcohol

compared to HIV-positive respondents. A higher proportion

of HIV-negative respondents also experienced mild sleep

problems as compared to HIV-positive respondents.

Linear regression of WHODAS scores

We found no interaction effects between HIV and other

factors before undertaking the multiple regression analy-

sis. Tables 5 and 6 show that there are several significant

differences in the proportion of chronic conditions (other

than HIV) and risk factors between respondents living

with and without HIV. These reached significance in the

Table 2. Percentage of chronic conditions by age and HIV status

50�59 (N �168) 60�69 (N �151) 70�(N �152)

HIV�

(N �135) (%)

HIV �

(N �33) (%)

HIV�

(N �82) (%)

HIV �

(N �69) (%)

HIV�

(N �27) (%)

HIV �

(N �125) (%) p Value by age

p Value by

HIV status

Hypertension

Yes 23.7 48.5 30.5 27.5 33.3 56.8 0.00 0.00

Diabetes

Yes 2.2 9.1 0.0 8.7 3.7 8.1 0.287* 0.001*

Arthritis

Yes 6.7 9.1 6.1 2.9 7.4 4.9 0.743* 0.316

Angina

Yes 0.9 0.0 1.4 5.2 0.0 4.8 0.225* 0.05*

COPD

Yes 10.4 3.0 7.3 1.5 3.7 1.6 0.026* 0.002*

Eye problems

Yes 4.4 3.0 4.9 7.3 18.5 16.1 0.001* 0.017

Depression

Yes 12.6 3.0 8.5 7.3 7.4 7.2 0.464 0.114

Stroke

Yes 1.5 3.0 1.2 0.0 3.7 4.0 0.140* 0.533*

Number of conditions

None 52.6 42.4 51.2 55.1 55.6 28.0 0.00* 0.004*

One 44.4 57.6 47.6 44.9 33.3 67.2

More than one 3.0 0.0 1.2 0.0 11.1 4.8

*Fisher’s exact test used due to small cell size.

Note: HIV not treated as a chronic condition throughout all tables.

Bold values are statistically significant at pB0.05.

Table 3. Ordered multivariate logistic regression of one or

more chronic conditions a

Independent variable OR (95% CI) p

HIV status

Positive*

Negative 1.4 (0.9�2.2) 0.149

Gender

Male*

Female 1.6 (1.1�2.3) 0.024

Age group

50�59*

60�69 0.9 (0.5�1.4) 0.538

70 � 2.1 (1.2�3.6) 0.006

Locality

Wakiso*

Kalungu 0.5 (0.4�0.8) 0.005

Masaka 1.0 (0.6�1.8) 0.982

aZero chronic conditions is the reference group. HIV status,

gender, age group, and locality are included in the final model.

*values in italic are statistically significant at pB0.05.

Joseph O. Mugisha et al.

6 (page number not for citation purpose)

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
univariate analyses (Table 5), however, when controlling

for all other variables, many of the associations between

these variables and the WHODAS score were no longer

significant. These included current tobacco use, HIV

infection, and arthritis diagnosis.

Table 6 shows the factors that were significantly

associated with WHODAS. A diagnosis of depression

was associated with a 9.4 point (95% CI 1.2�17.7) increase in the WHODAS score, meaning a significant

increase in disability compared to respondents who

were not diagnosed with depression. A 1-year increase

in the age of the respondent was significantly associated

with a 1.0 (95% CI 0.7�1.2) increase in WHODAS score. Gender was also a significant factor relating to

WHODAS scores with women having higher scores

(14.5; 95% CI 7.8�21.2). Several risk factors were also associated with disability. Having a sleep problem

of any type was significantly associated with higher

WHODAS scores, with the more severe the sleeping

problem, the higher the score. Respondents who had not

consumed any alcohol in the past 30 days had, on

average,a 4.7 point higher WHODAS score than current

drinkers.

Discussion This study examines HIV status and non-HIV chronic

conditions in Ugandans aged 50 years and over. The

prevalence of chronic conditions (other than HIV) was

affected by both age and HIV infection. When compar-

isons were made by age group, there were significant

differences in the prevalence of COPD, eye problems,

hypertension, and multi-morbidity which increased with

age. When comparing by HIV status, there were sig-

nificant differences, as seen for age. In addition, angina

and diabetes were more common in those who were HIV

negative. Reported multi-morbidity of chronic conditions

was higher among respondents living with HIV than

those not living with HIV, even after excluding HIV as a

chronic condition.

Within African settings, there have been only three

cohort studies (one in Uganda and two in South Africa)

that have included a sufficient sample of HIV-positive

individuals in order to assess the health and wellbeing of

older people by HIV status (26, 50, 51). There are few

studies from sub-Saharan Africa with which to compare

our study findings. However, the pattern of a higher per-

centage of people with chronic conditions in HIV-negative

older adults and in older age groups (70 years and more)

was also observed in the WOPS1 data in both Uganda

and in a comparable study from South Africa (50). In

data from both these countries, the lower prevalence of

hypertension in HIV-positive older adults was particularly

striking (26). Hypertension was objectively measured

through measurement of blood pressure. It is not very

clear as to why HIV-negative older people have a higher

prevalence of hypertension compared to their HIV-

positive counterparts. It is possible that if HIV-positive

Table 4. Predicted probabilities of one or more chronic

conditions

No chronic

conditions

One chronic

condition

More than one

condition

Gender

Male 0.52 0.46 0.01

Female 0.41 0.56 0.03

Age group

50�59 0.50 0.48 0.02

60�69 0.54 0.44 0.02

70 � 0.32 0.64 0.04

Locality

Wakiso* 0.39 0.58 0.03

Kalungu 0.54 0.44 0.02

Masaka 0.39 0.58 0.03

*values are statistically significant at pB0.05.

Table 5. Risk factors by HIV status

HIV�

(N �244)

HIV �

(N �227)

N % N % p

Ever used tobacco

Yes 75 30.7 77 33.9 0.460

No 169 69.3 150 66.1

Current user of tobacco (of ever users)

Yes 16 21.3 37 48.1 B0.001

No 59 78.7 40 51.9

Ever consumed alcohol

Yes 198 81.2 171 75.3 0.126

No 46 18.9 56 24.7

Currently consume alcohol (of ever users)

Yes 59 29.8 74 43.3 0.007

No 139 70.2 97 56.7

Sleep problems

None 141 57.8 101 44.5 0.005

Mild 16 6.6 36 15.9

Moderate 45 18.4 40 17.6

Severe 28 11.5 35 15.4

Extreme 14 5.7 15 6.6

On ART (n �212)

Yes 192 90.6

No 20 9.4

z

score

Median age 57 71 �11.5 B0.001

Median BMI 21.4 22.7 �4.0 0.001

Chronic conditions and disability in older people with and without HIV in Uganda

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098 7 (page number not for citation purpose)

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
older people are accessing more regular and better care,

they may be more likely to have been told that they have

another chronic condition, compared with HIV-negative

older persons who may not be accessing health care as

regularly. A study conducted among older people ‘infected

or affected by HIV’ established that 90% of the HIV-

positive older people were accessing treatment (52). The

data available from WOPS2 on health care utilization

show that 50% of the older people who were HIV negative

had taken more than 1 year without visiting a health

center. In future WOPS surveys, it will be important to

complement self-reported diagnoses of chronic diseases/

impairments with objective measures to see whether

these differences persist. Furthermore, the age differences

between the two groups (HIV positive and HIV negative)

might also be driving the differences in chronic conditions.

Those who were HIV positive were younger compared to

those who were HIV negative, with only a small propor-

tion of the HIV-positive respondents (11%) aged 70 years

and over. However as Table 2 illustrates, while older age

is associated with the reporting of chronic conditions

generally, for some chronic conditions, HIV infection is

also an important factor.

Tobacco use and alcohol consumption did not differ

between HIV-positive and HIV-negative older people

(53). A study conducted in rural areas of three African

countries showed that alcohol consumption and tobacco

smoking were significantly higher in men and women aged

50 years and over than in those under age 50; however,

that study did not collect information on respondents’

HIV status (11). While health behaviors and individual

factors increase the risk of chronic conditions, it is also

important to note that a majority of older persons in low-

income countries are poor and have access to limited

health resources. For example, poor living conditions

are a major risk factor for chronic respiratory diseases

(54, 55). Further, in many LMICs, due to poverty and

mobility issues, older persons are unable to seek medical

attention for the early detection and treatment of these

chronic conditions even though they recognize symptoms

or understand that the condition is treatable (56). Further,

the quality and quantity of services related to chronic

conditions, particularly related to the needs of older

persons, are limited in the majority of LMICs (21).

Thus, it is important to highlight that the need for health

service and structural changes as well as the lack of

available services contribute significantly to the quality of

life for those living with chronic conditions (21).

When we looked at disability using WHODAS2.0

scores, sleep problems and depression were significantly

related to higher scores (higher reported disability). While

it is not clear from our data if these are causing disability

or if disability is causing these problems, sleep and mental

health are arguably among the most under-reported

illnesses in lower level health facilities, particularly for

older adults. This calls for a greater focus on mental

health, and investigations into why these issues exist

among older Ugandans. Some of the reasons that have

been previously cited for poor mental health among older

Africans include lack of social connection, family sup-

port, HIV stigma, and caregiving burden (57, 58). There is

also need to examine best practices to treat mental health

issues in older people at lower levels of the health care

systems and through community-based interventions.

Confirming findings from WOPS1 (26), women had

significantly higher disability scores than men. It is

unclear why older women have these higher scores since

there is evidence that adult women generally have better

health seeking behavior than men (59�61). However, there

Table 6. Multivariable linear regression of WHO disability

scores

Independent variable Coefficient (95% CI) p

Arthritis diagnosis

No*

Yes �1.2 ( �9.9 to 7.6) 0.795

Depression diagnosis

No*

Yes 9.4 (1.2 to 17.7) 0.025

COPD diagnosis

No*

Yes 6.6 ( �2.2 to 15.4) 0.139

BMI 0.3 ( �1.1 to 0.8) 0.152

Age 0.98 (0.7 to 1.2) B0.001

HIV status

Negative*

Positive �6.3 ( �15.8 to 3.1) 0.187

Gender

Male*

Female 14.5 (7.8 to 21.2) B0.001

HIV status/hypertension diagnosis

HIV � /no diagnosis �1.6 ( �8.0 to 4.7) 0.605

HIV � /no diagnosis 3.4 ( �3.2 to 9.9) 0.314

HIV status/gender

HIV � /female �6.8 ( �15.5 to 1.8) 0.120

Current alcohol consumption

Yes*

No 4.7 (0.2 to 9.3) 0.04

Sleep problems (last 30 days)

None*

Mild 14.2 (7.3 to 21.0) B0.001

Moderate 16.9 (10.8 to 23.0) B0.001

Severe 20.3 (13.9 to 26.7) B0.001

Extreme/can’t do 21.7 (11.4 to 31.9) B0.001

Currently employed

Yes*

No 6.8 ( �0.2 to 12.3) 0.06

*Reference category.

Joseph O. Mugisha et al.

8 (page number not for citation purpose)

Citation: Glob Health Action 2016, 9: 31098 - http://dx.doi.org/10.3402/gha.v9.31098

http://www.globalhealthaction.net/index.php/gha/article/view/31098
http://dx.doi.org/10.3402/gha.v9.31098
is evidence that older African women report poorer self-

rated health and quality of life than men, both of which

are associated with disability (51, 62). This relationship

could be related to various aspects of home and social life

including older women’s care giving responsibilities and

the interrelationship between mental and physical health

(63�65). The underlying reasons for older women having significantly higher disability scores than older men need

further research. Respondents who reported not consum-

ing alcohol in the past 30 days reported higher WHODAS

score than current drinkers. Although the odds ratio for

those who were currently not consuming alcohol was

high, the confidence intervals were wide with the lower

limit of 0.2. One possible explanation may be that those

who already knew they had chronic conditions were

abstaining from alcohol and tobacco use because of their

chronic condition. Given the preponderance of evidence

of the role of alcohol, tobacco, and diet in chronic

conditions in high-income countries (66�68), it will be important to track these relationships over time.

Strengths and weaknesses

This study has potential strengths and weaknesses. There

are very few studies in Uganda and indeed sub-Saharan

Africa that examine the differences in chronic conditions

between older people living with and without HIV. This

study provides initial data on chronic conditions, includ-

ing the prevalence of the risk factors and the association

between chronic conditions and disability, in older people

living with and without HIV in Uganda.

One limitation of these data is that most of the

diagnoses made were by self-report. Though these may

not be as accurate as diagnoses made by clinicians,

diagnoses by self-report have been widely used in other

studies (2, 38, 40). It will be important to continue to

explore and validate self-reports of various health condi-

tions and behaviors against more objective measures

in these and other data from sub-Saharan Africa. In

addition, because of anticipated mortality and loss to

follow-up in the original sample of WOPS1, we added 100

respondents who were HIV positive in the WOPS2 sample.

These new respondents might be different in a number of

ways from the original WOPS1 sample, and from other

HIV-positive individuals living in Uganda, as they were

identified through an NGO that serves people living with

HIV. Last, there were age differences between the HIV-

positive and negative groups with the HIV positive being

younger than the HIV negative; however, to manage this

in the regression models, we controlled for age.

Conclusion In conclusion, this study has identified a number of

factors, like sleep problems and depression, and COPD

among HIV-positive individuals, which are associ-

ated with high disability scores among older Ugandans.

Unfortunately, in the majority of lower level health centers

in Uganda, which are the first levels of care for most of the

older people, such factors are under-reported, and there

are not adequate resources for services to address these

problems. As the population of Uganda ages, with and

without HIV, there is need to revise Ugandan health policy

to consider the health needs of older people. It is essential

to begin focusing on community and health service

interventions that positively impact both physical and

mental health in order to reduce disability and improve

overall quality of life among older Ugandans.

Authors’ contributions JOM, EJS and JS conceived the idea; JOM and JS

designed the study; MR and JOM analyzed the data. All

the authors contributed equally in writing and revising

the manuscript .

Acknowledgements

We would like to thank all older people who participated in this

study. We would also like to thank Professor Sally Findley from

the University of Columbia, New York, for her useful comments in

the preparation of this manuscript. We would also like to thank the

organizers of the Union of African Population Studies conference

2015 for allowing us to present this paper at this conference. Joseph

Mugisha Okello is funded through a post-doctoral fellowship from

University of Missouri.

Conflict of interest and funding

The authors have not received any funding or benefits from

industry or elsewhere to conduct this study.

Paper Context Previous work on this topic has focused on chronic condi-

tions in HIV-negative older people. This paper adds new

information on chronic conditions and their impact on

disability in HIV-positive and HIV-negative older people. We

recommend that health care workers should always look for

symptoms and signs of chronic disease in older people

irrespective of their HIV status.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Financial Hub
Study Master
Top Academic Tutor
Top Grade Tutor
Quick N Quality
Essay & Assignment Help
Writer Writer Name Offer Chat
Financial Hub

ONLINE

Financial Hub

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$23 Chat With Writer
Study Master

ONLINE

Study Master

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$39 Chat With Writer
Top Academic Tutor

ONLINE

Top Academic Tutor

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$45 Chat With Writer
Top Grade Tutor

ONLINE

Top Grade Tutor

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$34 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$26 Chat With Writer
Essay & Assignment Help

ONLINE

Essay & Assignment Help

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$36 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Job requirements matrix for sales associate - Adobe photoshop lightroom 4 serial number - When is behaviorism beneficial for learners - Case study on international human resource management with solution - English 9 - Political compass results meaning - Clinical development plan example - Sample persuasive speech outline on texting while driving - Performance manager 10 successfactors - Get self help mood diary - Tok presentation marking criteria - Use template to build a Strategic Marketing Plan - Trade support loan payments - Sesame seeds acidic or alkaline - Epic theatre vs realism - Millivolt drop test formula - Essay cell phones in school - What is the resolution of the maze runner - Literature 2 - Give the iupac name for the following molecule - Iag nestle com password manager - Gotham company purchased a new machine - Pink floyd leave those kid alone - 5a capper place kardinya - Monthly progress report for students - Chromium iii nitrate iron ii sulfate - 3 nephi 5 13 - Common anode seven segment display truth table - Assignment: IT Infrastructure Policies & Discussion - Brisbane city council duplex - Communication styles director relator socializer thinker - Infotech Global Economy - The forerunners poem analysis - Pros and cons of indian gaming - Corinella foreshore caravan park - Module 7 sam project 1a - Peachtree questions and answers pdf - How to write a teel introduction - Where is the break even point on a graph - Distance between earth rods - Confiscation, expropriation, and domestication are classified as - Assignment 12 - How to use junket rennet tablets to make cheese - Purpose of detergent in strawberry dna extraction - A web page designer creates an animation in - Total electric flux through a sphere - Carlie c iga meat bundle prices - Hamlet act 2 questions and answers - Paper - CARIBBEAN RELIGION HISTORY - Types of audible notification appliances - Cornwall college staff intranet - Micro economics Current event Summary - Recycled plastic tiles machine - Post cold war ppt - Ronald reagan speech 40th anniversary of d day - 40 minutes in decimal - Homeland Security Capstone Discussion 3 - Zero crossing detector using 741 - Standard celeration chart excel - Grammar translation method demonstration - Choose two chapters from Kathryn McPherson, Bedside Matters, - 6 peer responses due in 24 hours - Requiem for the croppies analysis - 132 divided by 7 - Criminology - Judy nunn net worth - If you're irish come into the parlour lyrics chords - Punnett square for sex linked traits - Complete bathroom suites wickes - Read and answer the following questions - Cardiac II - Cyber lab nova labs answers - Gimme shelter guitar pro - BIO 141 - Werribee mercy palliative care - 948 w altgeld st chicago il - Nafta and mexican trucking case study answers - Hltwhs001 participate in workplace health and safety answers - Pinto jk 2013 project management achieving competitive advantage - Ex16_xl_ch02_grader_ml1_hw metropolitan zoo gift shop weekly payroll 1.2 - Social justice action project ideas - Guardian angel bus routes - Relative location of seattle - Cross keys surgery chinnor - Eye of nye cloning - Michael kimmel bros before hos - Lady macbeth sleepwalking scene video - Dispositional personality theories matrix - Shark tank season 9 episode 3 watch online - Racism quotes from remember the titans - Realpresence capture server virtual edition - Diarmuid smyth sword security - Use case diagram for calculator - What does joe starbuck never wear while drinking coffee worksheet - Probability as a fraction - Mini unit - K resin kr 99 - Ptr baler and compactor - Average weight of a round bale of hay