Loading...

Messages

Proposals

Get Custom homework writing help and achieve A+ grades!

Custom writing help for your homework, Academic Paper and Assignments from Academic writers all over the world at Tutorsonspot round the clock.

Our promises:

  • Custom homework writing help
  • Plagiarism Free Solutions Guaranteed!
  • A+ Grade Guaranteed!
  • Privacy guaranteed!
  • Best prices guaranteed!
  • Timely delivery guaranteed!
  • Hundreds of Qualified Writers 24/7

virtual capacitor experiment answers

Open Homework Posted by: papadok01 Posted on: 21/11/2020 Deadline: 12 Hours

18 writers want to do this homework:

Top Essay Writer
Homework Guru
Helping Hand
One Stop Tutor
Omar B.
Peter O.
George J.
Homework Mentor
Olivia H.
Ideas & Innovations
Finance Homework Help
Exam Solver
Smart Accountants
A Grade Exams
Accounting Homework Help
Instant Assignments
Calculation Guru
Financial Hub
CAPACITORS OBJECTIVES: · To understand how a parallel plate capacitor works. · To determine the dielectric constant for virtual paper used as the dielectric in virtual capacitor. · To learn how capacitors connected in series and in parallel behave. · To find equivalent capacitance for a complex combination of virtual capacitors. EQUIPMENT: Computer with Internet access. INTRODUCTION AND THEORY: Very common and important components in modern electrical devices are capacitors. They are what makes computer memory work. They are used with resistors in timing circuits, they occur as filters and coupling elements in every radio and TV set, they can eliminate ripples or spikes in DC voltages, they are used in flash units in photography. A capacitor is considered a passive electronic element because it does not actively affect electrical currents in the circuit nor produce electrons or energy. Instead, it is used to store electrical charge (and hence electrical energy). A capacitor consists of a pair of conductors separated by a non-conductive material (or region) called dielectric which effectively insulates the two conductors. The schematic symbol of a capacitor has two parallel vertical lines (representing the conductors) set a small distance apart, and two horizontal connecting wires: capacitor symbol Any two conductors separated by an insulator (including vacuum) form a capacitor. When a voltage (potential difference) is applied across the capacitor, a charge is transferred to and from the conductors and an electric field develops in the dielectric. This field stores energy and produces a mechanical force between the conductors which can be released when needed. When a capacitor is charged the two conductors hold equal in magnitude but opposite in sign amount of charge so the net charge on the capacitor as a whole remains zero. The capacitor’s ability to hold an electric charge is characterized by capacitance C defined as the ratio of the magnitude of the charge Q on either conductor to the magnitude of the potential difference ∆V between the conductors: [Eqn. 1] The SI unit of capacitance is one farad (1 F). One farad is equal to one coulomb per volt. 1 F = 1 farad = 1 C/V = 1 coulomb/volt The greater the capacitance C of a capacitor, the more charge Q can be stored on either conductor for a given potential difference ∆V and hence greater the amount of stored energy. One farad is a very large unit and we rarely see capacitors this big. In many applications the most convenient subunits of capacitance are the millifarad (1mF = 10-3 F), the microfarad (1µF = 10-6 F), the nanofarad (1nF = 10-9 F) and the picofarad (1pF = 10-12 F). The value of the capacitance depends only on the shapes and sizes of the conductors and on the nature of the insulating material between them. The simplest way of making a capacitor is to build a unit with two parallel conducting fully overlapping sheets, each with area A, separated by a thin layer of air of thickness d. Figure 1. Design of a parallel-plate capacitor. Air File:Parallel plate capacitor.svg This arrangement is called a parallel-plate capacitor and its capacitance approximately (when d is small compared to the other dimensions and the field fringing effect around the periphery provides a negligible contribution) equals: C0 = , [Eqn. 2] where is the permittivity of free space = 8.854-12 F/m. Please, note that A represents the area of overlap of the conducting surfaces. The capacitance of a parallel plate capacitor is directly proportional to the area A of each plate (or in general to the area of overlapping) and inversely proportional to their separation d. Plates with larger area can store more charge. Similar effect takes place for the plates being closer together – according to Coulomb’s law when d is smaller the positive charges on one plate exert a stronger force on the negative charges on the other plate, allowing more charges to be held on the plates for the same applied voltage and this constitutes capacitor with larger C. In commercial capacitors the layer of air is replaced by dielectric material such as Mylar, rubber, mica, waxed paper, silicone oil etc. If the space between the conducting plates is completely filled by the dielectric, the capacitance increases by the factor , called the dielectric constant (or relative permittivity) of the material which characterizes the reduction in effective electric field between the plates due to the polarization of the dielectric. Figure 2. Charged parallel plate capacitor: - air filled (top), - with dielectric (bottom). http://hyperphysics.phy-astr.gsu.edu/hbase/electric/imgele/diel3.gif In general the capacitance of a parallel plate capacitor with a dielectric can be expressed as: C = = , [Eqn. 3] where is now the permittivity of the dielectric = κ0 . Capacitors are manufactured with only certain standard capacitances and working voltages. If a different value is needed for a certain application, one has to use a combination (series, parallel or mixed) of those standard elements connected in such a way to achieve the required equivalent capacitance. For a series connection, the magnitude of charge on all plates will be the same. Conservation of energy dictates that the total potential difference of the voltage source will be split between capacitors and apportioned to each of them according to the inverse of its capacitance. The entire series acts as a capacitor smaller that any of its components individually. = ∆VSource = ∆V1 + ∆V2 + ∆V3 + ….. = + + + … = + + + …. [Eqn.4] Figure 3. Two capacitors in series. (a) Schematicillustration. (b) Equivalent circuit diagram. Capacitors are combined in series mostly to achieve a higher working voltage. In a parallel configuration all capacitors have the same applied potential difference. However, their individual charges might not necessarily be equal because the charge is apportioned among them by size (C). Since the total charge stored in such combination is the sum of all the individual charges, the equivalent capacitance equals the sum of the individual capacitances and is always greater than any of the single capacitance in this arrangment. QTotal = Q1 + Q2 + Q3 + …. = C1∆V + C2∆V + C3∆V +….. = (C1 + C2 + C3 +…)∆V CEQ = C1 + C2 + C3 + … [Eqn. 5] Figure 4. Two capacitors in parallel. (a) Schematicillustration. (b) Circuit diagram. (c)Circuit diagram with equivalent capacitance. PART I. Parallel plate capacitor. Open the PhET Interactive Simulations web page http://phet.colorado.edu/en/simulation/capacitor-lab and download the Capacitor Lab. The two parallel plates connected to the battery constitute the simplest capacitor. You can change the parameters of this capacitor by placing the cursor on the green arrows and moving it along the indicated directions (up and down to modify the plate separation, sideways to alter the area of plates). From the right side tool bar menu select all options except the electric field detector. With the mouse left click grab the red test lead of the voltmeter and place it on the upper plate. Next, grab the black test lead and move it to the lower plate. The voltmeter is now ready to measure the potential difference ∆V applied to the capacitor. The potential difference between the capacitor plates will depend on the position of the vertical slider on the battery which allows for adjustment of the battery output. 1. “Design” your own air-filled parallel plate capacitor with plate separation d = 7 mm and having the plate area A of 250 mm2. Apply approximately 1.00 V to it. If the bar graphs displaying the capacitance, the plate charge and the energy go out of range, click the magnifying glasses icons positioned next to them. Capture the screen and paste it into MS Word file – you will have to attach this screen shot to your lab report. Figure 5. Custom air filled capacitor – example. For your custom capacitor calculate its capacitance (based on its dimensions, ), the stored charge ( = and the stored energy (). How do the calculated values of C, Q and E compare with the corresponding ones shown in the simulation – calculate discrepancy? 2. Investigate the effect of changing the plate separation and the plate surface area (one parameter at a time) on the capacitance, the amount of stored charges and energy. In your statements quote values extracted from the simulation displays. 3. To your custom capacitor designed in step 1 add a dielectric. Press the “Dielectric” tab in the simulation window and fully insert between the plates a custom dielectric of dielectric constant 5.0. The dielectric is aligned perfectly with the plates when the offset = 0 mm. Adjust the separation and plate area to match your settings in step 1. Apply the same voltage as you had in step 1 and record the values of capacitance, charge and energy displayed by the simulation. Capture the screen and paste it into MS Word file – you will have to attach this screen shot to your lab report. Figure 6. Custom capacitor with dielectric – example. By how much are these values different from the corresponding numbers registered for your custom air-filled capacitor? Do you measurements validate the statement that inserting a dielectric between the plates increases the capacitance by a factor equal to its dielectric constant? 4. Now, using your custom capacitor, you will conduct an experiment to determine the dielectric constant of paper. In this part you have to be extremely careful about the units! In the Dielectric “Material” window select paper from the drop down menu. As you slide the dielectric out of the capacitor, take readings of the capacitance C and the offset ∆x for 5 positions of the dielectric material in between the plates. In Logger Pro program make a plot of C (y-axis) vs. ∆x (x-axis). Apply linear fit to your set of data and from the intercept of this linear fit find the dielectric constant of the paper along with its error. How does your experimental value of the dielectric constant for paper compare with the known value of 3.5. Attach the graph from Logger Pro to the lab report. Hint. The capacitor with partially inserted dielectric can be looked at as two capacitors connected in parallel: - the first one air-filled of plate area= , where symbolizes the dielectric offset measured from the left edge of plates, and represents the width of plates but, since the original plates are square in shape, is equal to (A is your custom plate area), - the second one filled with dielectric material of plate area = If both capacitors have the same plate separation d, we can describe their capacitances respectively as: = = and = = Hence, the equivalent capacitance for the two capacitors in parallel after rearranging some terms comes to: + [Eqn. 6] It is apparent that eqn. 6 is a linear function of (same as with intercept b = . Then , and if we know the uncertainty in the intercept from the Logger Pro fit, we can propagate it into the error in dielectric constant: . PART II.Capacitors in parallel – sharing charges. Download the Circuit Construction Kit (AC + DC), Virtual Lab from the PhET website: http://phet.colorado.edu/en/simulation/circuit-construction-kit-ac-virtual-lab . Construct the circuit shown in the figure below. By right-click on the circuit elements adjust their values to the following parameters: V0 = 9 Volts, C1 = 0.1 F, C2 = 0.1 F, C3 = 0.05 F. To add the voltmeter, select it from the tools menu on the right hand side panel. V0 C3 C2 C1 W1 W3 W2 Step 1. Charging capacitor C1 (initially discharged) → keep switches W2 and W3 open; close switch W1. Connect the voltmeter leads across C1 and measure voltage V1. Is it the same as V0? Calculate the charge Q1 stored on capacitor C1, Q1 = C1V1. What is the magnitude of positive charges deposited on C1? What is the magnitude of negative charges deposited on C1? Step 2. Sharing the charge stored on C1 with capacitor C2 (initially discharged) → keep switch W3 still open; open switch W1 and close switch W2. Measure voltage V2 across capacitors C1 and C2 and calculate the amount of charges stored on each of them, Q12= C1V2 and Q2 = C2V2 . Is the measured voltage V2 different then V1? Why? Knowing the values of capacitance C1 and C2 and the initial charge Q1 stored on C1, calculate the theoretically expected voltage V2Theory after capacitor C2 got connected in parallel with C1. Does your measured voltage V2 agree with the calculated theoretical value of V2Theory? Step 3. Sharing the charge stored on C2 (from step 2) with capacitor C3 (initially discharged) → keep switch W1 still open; also open switch W2 and then close switch W3. In this configuration the charge stored in step 2 on C2 will be distributed between C2 and C3. Following the procedure from step 2 measure the voltage V3 across C2 and C3, calculate the charges deposited on individual capacitors and find analytically the theoretical voltage V3Theory. Does your measured voltage V3 agree with the calculated theoretical value of V3Theory? Which capacitor stores less charges and why? Step 4. Distribution of charges between three capacitors in parallel (all capacitors initially charged) → keep switch W1 open and the switch W3 closed. Capacitor C1 should still hold the charge from step 2 (Q12), while capacitors C2 and C3 should have the amounts of charges determined in step 3 (Q23 = C2V3, Q3 = C3V3). Close the switch W2. Measure the new voltage V4 across capacitors C1, C2 and C3. Prove analytically (by clear calculation) that the measured voltage agrees with the theory. Hint: The total initial charge in this case is the sum of charges Q12 + Q23 + Q3. This amount of charge is conserved throughout the experiment and should equal the total final charge stored on all three capacitors after closing the switch W2 and equalizing the voltage to V4Theory. PART III. Combination of capacitors in series and in parallel – finding an unknown equivalent capacitance of three capacitors connected in series using the charge sharing method. Construct the circuit shown in the figure below. C1 C4 C3 C2 W1 W2 V0 By right-click on the circuit elements adjust their values to the following parameters: V0 = 9 Volts, C1 = 0.1 F, C2 = 0.05 F, C3 = 0.1 F, C4 = 0.2 F. To add the voltmeter, select it from the tools menu on the right hand side panel. Step 1. Charging capacitor C1 → keep switch W2 open; close switch W1. Connect the voltmeter leads across C1 and measure the voltage V1. Calculate the charge deposited on C1. Step 2. Finding the unknown equivalent capacitance of C2, C3 and C4 (all initially discharged) connected in series by sharing charge from capacitor C1 (from step 1) → open switch W1, then close the switch W2. Measure the new voltage V12 across C1. The three series capacitors C2, C3, C4 can be replaced by one capacitor CEQ of such value that its effect on the circuit would be equivalent. Note that the equivalent capacitor CEQ would be now connected in parallel with C1. Following the reasoning from PART II Step 2 find the capacitance CEQ. How does this experimental value of CEQ compare to the theoretical one calculated from the following equation: = + + or CEQ = According to what you have learnt about capacitors connected in series what charge should be stored on each of the three capacitors C2, C3, C4? Measure the voltage across each of the three series capacitors and calculate the corresponding charges Q2, Q3, Q4 deposited on them. Do the experimentally determined charges Q2, Q3, Q4 agree with the theoretical prediction? * Include answers to all questions in lab report Capacitors – Post Lab Checklist. PART I. · Screen capture of the air-filled virtual capacitor designed in PhET. · Screen capture of the virtual capacitor with dielectric designed in PhET. · For TWO plate separations and TWO plate surface areas for the air-filled capacitor and just one set of parameters for the capacitor with a dielectric, calculations of the following: ü Capacitance (5 values total), ü Stored charge (5 values total), ü Stored energy (5 values total). · In LoggerPro – graph of C vs. Δx for a paper-filled capacitor, with linear fit. · Calculations of the experimental dielectric constant κ for the paper along with the uncertainty in the measurement of κ. · Calculation of the discrepancy (expressed in %) between your experimental κ and the accepted value of 3.5. PART II. · All calculations as detailed in steps 1 – 4 of the lab write-up. PART III. · Step by step calculations of the experimental equivalent capacitance. Calculation of the theoretical equivalent capacitance. Calculation of the discrepancy (expressed in %) between the experimental and the theoretical equivalent capacitance. · Calculations of the charges stored on each capacitor. · ALL PARTS - Address all discussion questions posted in the lab write-up! LAB REPORT CRITERIA The formal Lab Report is written from the third person; in the passive form, in the past tense. It includes the following parts: Expression of the experimental results is an integral part of science. The lab report should have the following format: · Cover page - course name , title of the experiment, your name (prominent), section number, TA’s name, date of experiment, an abstract. An abstract (two paragraphs long) is the place where you briefly summarize the experiment and cite your main experimental results along with any associated errors and units. Write the abstract after all the other sections are completed. The main body of the report will contain the following sections, each of which must be clearly labeled: · Objectives - in one or two sentences describe the purpose of the lab. What physical quantities are you measuring? What physical principles/laws are you investigating? · Procedure - this section should contain a brief description of the main steps and the significant details of the experiment. · Experimental data - your data should be tabulated neatly in this section. Your tables should have clear headings and contain units. All the clearly labeled plots (Figure 1, etc.) produced during lab must be attached to the report. The scales on the figures should be chosen appropriately so that the data to be presented will cover most part of the graph paper. · Results – you are required to show sample calculation of the quantities you are looking for including formulas and all derived equations used in your calculations. Provide all intermediate quantities. Show the calculation of the uncertainties using the rules of the error propagation. You may choose to type these calculations, but neatly hand write will be acceptable. Please label this page Sample Calculations and box your results. Your data sheets that contain measurements generated during the lab are not the results of the lab. · Discussion and analysis - here you analyze the data, briefly summarize the basic idea of the experiment, and describe the measurements you made. State the key results with uncertainties and units. Interpret your graphs and discuss what trends were observed, what was the relationship of the variables in your experiment. An important part of any experimental result is a quantification of error in the result. Describe what you learned from your results. The answers to any questions posed to you in the lab packet should be answered here. · Conclusion - Did you meet the stated objective of the lab? You will need to supply reasoning in your answers to these questions. . All data sheets and computer printouts generated during the lab have to be labeled Fig.1, Fig. 2, and included at the end of the lab report. Important Note · All data sheets and computer printouts generated during the lab have to be labeled Fig.1, Fig. 2, and included at the end of the lab report. · The Post-Lab Checklist does not need to be attached when the lab report is submitted.

Open Homework

Project ID 755324
Category Arts & Education
Subject Education
Level Masters
Deadline 12 Hours
Budget $40-80 (2-5 Pages/ Short Assignment) Approx.
Required Skills Academic Writing
Type Open For Bidding

How it Works (Full Video)

How to Hire an Academic Writer

How to Post Homework Question

Order Your Homework Today!

We have over 1500 academic writers ready and waiting to help you achieve academic success

Private and Confidential

Yours all information is private and confidential; it is not shared with any other party. So, no one will know that you have taken help for your Academic paper from us.

18 writers want to do this homework:


Top Essay Writer

ONLINE

Top Essay Writer

United States of America

I have more than 12 years of experience in managing online classes, exams, and quizzes on different websites like; Connect, McGraw-Hill, and Blackboard. I always provide a guarantee to my clients for their grades.

Offer: $65

Homework Guru

ONLINE

Homework Guru

India

Hi dear, I am ready to do your homework in a reasonable price and in a timely manner.

Offer: $62

Helping Hand

ONLINE

Helping Hand

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

Offer: $60

One Stop Tutor

ONLINE

One Stop Tutor

Hi dear, I am ready to do your homework in a reasonable price.

Offer: $62

Omar B.

ONLINE

Omar B.

Hi dear, I am ready to do your homework in a reasonable price.

Offer: $62

Peter O.

ONLINE

Peter O.

Australia

Hello, I can assist you in writing attractive and compelling content on ganja and its movement globally. I will provide with valuable, informative content that you will appreciate. The content will surely hit your target audience. I will provide you with the work that will be according to the needs of the targeted audience and Google’s requirement.

Offer: $55

George J.

ONLINE

George J.

United States of America

Hi dear, I am ready to do your homework in a reasonable price.

Offer: $62

Homework Mentor

ONLINE

Homework Mentor

Pakistan

I am an Academic writer with 10 years of experience. As an Academic writer, my aim is to generate unique content without Plagiarism as per the client’s requirements.

Offer: $60

Olivia H.

ONLINE

Olivia H.

United Kingdom

Greetings! I’m very much interested to work on this project. I have read the details properly. I am a Professional Writer with over 5 years of experience, therefore, I can easily do this job. I will also provide you with TURNITIN PLAGIARISM REPORT. You can message me to discuss the detail. Why me? My goal is to offer services to you that are profitable. I don’t want you to place an order once and that’s it. For me to be successful, I need you to come back and order again. Give me the opportunity to work on your project. I wish to build a long-term relationship with you. We can have further discussion in chat. Thanks!

Offer: $55

Ideas & Innovations

ONLINE

Ideas & Innovations

Hi, Hope you are doing well. I can do this easily because I have several experiences to write articles on different web sites, creative content for several blogs & also SEO writing. Even I have written many kindle ebooks, Being a creative writer, I think I am the most eligible person for your Ghostwriting project. So lets make no longer delay & start chatting immediately.

Offer: $60

Finance Homework Help

ONLINE

Finance Homework Help

Australia

I have a Master’s degree and experience of more than 5 years in this industry, I have worked on several similar projects of Research writing, Academic writing & Business writing and can deliver A+ quality writing even to Short Deadlines. I have successfully completed more than 2100+ projects on different websites for respective clients. I can generally write 10-15 pages daily. I am interested to hear more about the project and about the subject matter of the writing. I will deliver Premium quality work without Plagiarism at less price and time. Get quality work by awarding this project to me, I look forward to getting started for you as soon as possible. Thanks!

Offer: $55

Exam Solver

ONLINE

Exam Solver

United Kingdom

Hey, Hope you are doing great :) I have read your project description. I am a high qualified writer. I will surely assist you in writing paper in which i will be explaining and analyzing the formulation and implementation of the strategy of Nestle. I will cover all the points which you have mentioned in your project details. I have a clear idea of what you are looking for. The work will be done according to your expectations. I will provide you Turnitin report as well to check the similarity. I am familiar with APA, MLA, Harvard, Chicago and Turabian referencing styles. I have more than 5 years’ experience in technical and academic writing. Please message me to discuss further details. I will be glad to assist you out.

Offer: $55

Smart Accountants

ONLINE

Smart Accountants

India

I feel, I am the best option for you to fulfill this project with 100% perfection. I am working in this industry since 2014 and I have served more than 1200 clients with a full amount of satisfaction.

Offer: $55

A Grade Exams

ONLINE

A Grade Exams

India

Hi, I have read the instructions carefully and I clearly understand what is required of the project. I always make sure I proofread and edit papers well to ensure they are free of typos, plagiarism, and grammar mistakes. Hire me for a timely delivery of a quality content.

Offer: $55

Accounting Homework Help

ONLINE

Accounting Homework Help

Bangladesh

I can help you with your homework & assignments to get A grade. I have helped several students multiple fields such as marketing, SWOT, PESTEL, Finance, Law, Sociology and Psychology. I know how to structure and format content with different writing styles such as MLA, APA, & Harvard. Please try me once at least. You will be satisfied.

Offer: $55

Instant Assignments

ONLINE

Instant Assignments

Pakistan

Hey, I can write about your given topic according to the provided requirements. I have a few more questions to ask as if there is any specific instructions or deadline issue. I have already completed more than 250 academic papers, articles, and technical articles. I can provide you samples. I believe my capabilities would be perfect for your project. I can finish this job within the necessary interval. I have four years of experience in this field. If you want to give me the project I had be very happy to discuss this further and get started for you as soon as possible.

Offer: $55

Calculation Guru

ONLINE

Calculation Guru

India

I see that your standard of work is to get content for articles. Well, you are in the right place because I am a professional content writer holding a PhD. in English, as well as having immense experience in writing articles for a vast variety of niches and category such as newest trends, health issues, entertainment, technology, etc and I will make sure your article has all the key pointers and relevant information, Pros, Cons and basically all the information that a perfect article needs with good research. Your article is guaranteed to be appealing, attractive, engaging, original and passed through Copyscape for the audience so once they start reading they keep asking for more and stay interested.

Offer: $55

Financial Hub

ONLINE

Financial Hub

Hey, I have gone through your job posting and become very much interested in working with you.I can deliver professional content as per your requirements. I am a multi-skilled person with sound proficiency in the English language for being a native writer who worked on several similar projects of content writing and can deliver quality content to tight deadlines. I am available for both online and offline writing jobs with the promise of offering an incredibly responsive and supreme level of customer service. Thanks!

Offer: $55

Ready To Place An Order? Its Free!

Homework Questions in Arts & Education


distinguish between a fragmented and consolidated industry


how did the utopian communities challenge existing ideas about property and marriage


metacognitive forum


nortel case study


cloud computing design patterns thomas erl pdf


allan hancock blackboard


daliye


normalization of deviance in organizational practices


an uncomfortable bed by guy de maupassant


auditing it infrastructures for compliance pdf


ethics awareness inventory psy 490


self concept paper


strengths and weaknesses of dsm 5


1. why would a network administrator use wireshark and netwitness investigator together?


the ideas of armchair criminologists achieve acclaim in all but which of the following ways?


arteduc 1600


health care provider and faith diversity


why is “expanding the pie” an effective way of negotiating collaboratively?


customized learning theory paper


case mix index national average


hca 459 senior project


ehr implementation highlighting past


implementing cybercrime spyware


soc 120 week 2 assignment


the boxplots below display annual incomes (in thousands of dollars) of households in two cities.


why is mobile computing critical to the success of an organization now?


why do mergers and acquisitions sometimes fail to produce anticipated results?


susquehanna equipment rentals


practice of clinical psychology worksheet


week 6: apn professional development plan paper


yale university investments office august 2006


university of phoenix placement test


unwieldy inheritance


goal setting influences employee behavior and performance mainly by improving:


schools interested in proposing a curriculum consistent with a nation at risk would probably offer


deep space composition


why were the events at dunkirk memorable in military history


in entertainment licensing, the major risk to licensees is that the brand will become overexposed.


systems analysis and design with uml 5th edition pdf


teuer furniture


05.04 holocaust: assignment


hist289y


unlike peru's coast ecuador's coastland consists of


ehr implementation highlighting past


charge account validation python


occupy mall street


why is mobile computing critical to the success of an organization now?


the blizzard by david ives analysis


why do mergers and acquisitions sometimes fail to produce anticipated results?


practice of clinical psychology worksheet