5 CHAPTER
Infrastructures: Sustainable Technologies
CHAPTER OUTLINE
SECTION 5.1 MIS Infrastructures
SECTION 5.2 Building Sustainable MIS Infrastructures
The Business Benefits of a Solid MIS Infrastructure
Supporting Operations: Information MIS Infrastructure
Supporting Change: Agile MIS Infrastructure
MIS and the Environment
Supporting the Environment: Sustainable MIS Infrastructure
What’s in IT for me?
Why do you, as a business student, need to understand the underlying technology of any company? Most people think “that technical stuff” is something they will never personally encounter and for that reason do not need to know anything about MIS infrastructures. Well, those people will be challenged in the business world. When your database fails and you lose all of your sales history, you will personally feel the impact when you don’t receive your bonus. When your computer crashes and you lose all of your confidential information, not to mention your emails, calendars, and messages, then you will understand why everyone needs to learn about MIS infrastructures. You never want to leave the critical task of backing up your data to your MIS department. You want to ensure personally that your information is not only backed up but also safeguarded and recoverable. For these reasons, business professionals in the 21st century need to acquire a base-level appreciation of what MIS can and cannot do for their company. Understanding how MIS supports growth, operations, profitability, and most recently, sustainability, is crucial whether one is new to the workforce or a seasoned Fortune 500 employee. One of the primary goals of this chapter is to create a more level playing field between you as a business professional and the MIS specialists with whom you will work. After reading it, you should have many of the skills you need to assist in analyzing current and even some future MIS infrastructures; in recommending needed changes in processes; and in evaluating alternatives that support a company’s growth, operations, and profits.
Page 171
opening case study
Box Up Your Data
What happens when you need a file for a class that you have on your desktop back at home? What happens when you want to share your wedding video with your friends and family around the world? What happens when you want to safeguard the 4,000 selfies you have taken over the past year? Your best bet is to store your data in a Box! Box offers data storage services that: Help you securely store, share, and manage your files.
Store unlimited data at the start.
Securely send large files online.
Take advantage of comprehensive security for mobile devices.
Easily collaborate online with anyone, anywhere.
Control who can access content.
Edit documents and files online.
Box is a cloud data-sharing service that can increase your productivity by making it easy to create and collaborate with co-workers by using computers, iPhones, iPads, Androids, or other devices. With a Box site, you can access up to 50GB of files from anywhere. Through a web link, you can invite others to share your files or collaborate on your documents, and you can synchronize files from Box to your desktop and vice versa.
Another College Start-Up Box
Rachel King from InfoWorld interviewed Box founder Aaron Levie on how he and his childhood friends started the company. Box as a platform and company was born in 2005, but even that was well after the establishment of the friendship between Levie and his cofounder and Box’s chief financial officer, Dylan Smith. Smith and Levie met as classmates at Islander Middle School on Mercer Island, Washington, a suburb southeast of Seattle, and then went to Mercer Island High School together. “Even back then he started getting me interested in entrepreneurship,” Smith recalled. “He was much more interested in technology [than business] back then.” Two other key members of the Box team were also childhood friends.
Jeff Queisser, currently vice president of Box’s technical operations, met Levie when they were in the fourth and fifth grades, respectively, as neighbors. By high school, Queisser recalled that the two were starting “kinda crazy businesses.” “[Levie] was a magician, and I was very much a hard core nerd and doing programming,” Queisser laughed.
Sam Ghods, now vice president of technology at Box, joined the group in the tenth grade when his family relocated from Illinois to Mercer Island. The same year in school, Ghods recalled that he and Queisser became friends on the bus to school, eventually hanging out more frequently with Smith and Levie as well and getting involved in various business schemes.
Page 172
In high school, Levie’s parents’ hot tub served as the discussion forum. “We would get a call at about 12:30, and it would be Aaron, ‘What do you think about this? I think this could be absolutely insane. Like, come over right now. I got towels, just bring shorts, come over,’” Queisser remembers. “This would be at 12:30 and by like 12:40, we were in his hot tub just iterating ideas.”
And although he built a lot of websites in high school, Levie doesn’t brag about having a strong technical background, admitting, “They weren’t very good websites.” One example was a search engine dubbed Zizap, which Levie facetiously peddled as “the world’s fastest search engine if you have never been to Google.” Another project was Fastest.com, a website that let people buy and sell their homes online. Levie notes sarcastically that it “made sense as a high school senior to launch that company.”
These early rumblings of entrepreneurship would soon pay dividends. Levie enrolled at the University of Southern California in 2003 to study business, which is where the idea that was to become Box began to develop. “It’s not like a lightning bolt that hits you in the head, and all of a sudden you just get so obsessed with storing files online. It was a series of factors,” he explained.
The first piece of the puzzle came from the basic difficulty of getting work done. He and his fellow students were working from lots of computers, collaborating on projects, and accessing files from different places, including libraries, classrooms, and dorm rooms.
“It felt unbelievably kind of painful and taxing to share data across those different systems and with other people. It seemed like there should be a simpler solution,” Levie remarked.
A business school project in which students were asked to evaluate a particular industry added another piece to the puzzle. Levie chose the nascent online storage industry and wrote a paper on flaws with existing businesses in the market and what one could do to build a better business effectively. It didn’t take long before he realized the massive potential. “It was very obvious that there should be a technology category that solved this problem,” he said.
“When we were talking about just the things that we were doing and the stuff we were working on, Box came up,” Levie described. “It’s very, very early in the process, and Dylan Smith decided to join on board as the other half of the business and product side. He handled the finance and some of the early marketing stuff. That was how we started.”1
Market Competition
The storage market is increasing as the price and density of storage drops about every 18 months, making it cheaper to offer free storage from big companies that can absorb the costs, such as Apple and Google. There are a number of companies competing in the cloud storage arena, as compared in Figure 5.1.
Page 173
FIGURE 5.1
Test Center Scorecard
Source: www.inforworld.com
Page 174
section 5.1
MIS Infrastructures
LEARNING OUTCOMES
5.1Explain MIS infrastructure and its three primary types.
5.2Identify the three primary areas associated with an information MIS infrastructure.
5.3Describe the characteristics of an agile MIS infrastructure.
THE BUSINESS BENEFITS OF A SOLID MIS INFRASTRUCTURE
LO 5.1: Explain MIS infrastructure and its three primary types.
Management information systems have played a significant role in business strategies, affected business decisions and processes, and even changed the way companies operate. What is the foundation supporting all of these systems that enable business growth, operations, and profits? What supports the volume and complexity of today’s user and application requirements? What protects systems from failures and crashes? It is the MIS infrastructure , which includes the plans for how a firm will build, deploy, use, and share its data, processes, and MIS assets. A solid MIS infrastructure can reduce costs, improve productivity, optimize business operations, generate growth, and increase profitability.
Briefly defined, hardware consists of the physical devices associated with a computer system, and software is the set of instructions the hardware executes to carry out specific tasks. In today’s business environment, most hardware and software is run via a network. A network is a communications system created by linking two or more devices and establishing a standard methodology in which they can communicate. As more companies need to share more information, the network takes on greater importance in the infrastructure. Most companies use a specific form of network infrastructure called a client and server network. A client is a computer designed to request information from a server. A server is a computer dedicated to providing information in response to requests. A good way to understand this is when someone uses a web browser (this would be the client) to access a website (this would be a server that would respond with the web page being requested by the client). Anyone not familiar with the basics of hardware, software, or networks should review Appendix A, “Hardware and Software Basics,” and Appendix B, “Networks and Telecommunications,” for more information.
In the physical world, a detailed blueprint would show how public utilities, such as water, electricity, and gas, support the foundation of a building. MIS infrastructure is similar because it shows in detail how the hardware, software, and network connectivity support the firm’s processes. Every company, regardless of size, relies on some form of MIS infrastructure, whether it is a few networked personal computers sharing an Excel file or a large multinational company with thousands of employees interconnected around the world.
An MIS infrastructure is dynamic; it continually changes as the business needs change. Each time a new form of Internet-enabled device, such as an iPhone or BlackBerry, is created and made available to the public, a firm’s MIS infrastructure must be revised to support the device. This moves beyond just innovations in hardware to include new types of software and network connectivity. An enterprise architect is a person grounded in technology, fluent in business, and able to provide the important bridge between MIS and the business. Firms employ enterprise architects to help manage change and dynamically update MIS infrastructure. Figure 5.2 displays the three primary areas on which enterprise architects focus when maintaining a firm’s MIS infrastructure.
Supporting operations: Information MIS infrastructure identifies where and how important information, such as customer records, is maintained and secured.
Supporting change: Agile MIS Infrastructure includes the hardware, software, and telecommunications equipment that, when combined, provides the underlying foundation to support the organization’s goals.
Page 175
FIGURE 5.2
MIS Infrastructures
Supporting the environment: Sustainable MIS infrastructure identifies ways that a company can grow in terms of computing resources while simultaneously becoming less dependent on hardware and energy consumption.
SUPPORTING OPERATIONS: INFORMATION MIS INFRASTRUCTURE
LO 5.2: Identify the three primary areas associated with an information MIS infrastructure.
Imagine taking a quick trip to the printer on the other side of the room, and when you turn around you find that your laptop has been stolen. How painful would you find this experience? What types of information would you lose? How much time would it take you to recover all of that information? A few things you might lose include music, movies, emails, assignments, saved passwords, not to mention that all-important 40-page paper that took you more than a month to complete. If this sounds painful then you want to pay particular attention to this section and learn how to eliminate this pain.
An information MIS infrastructure identifies where and how important information is maintained and secured. An information infrastructure supports day-to-day business operations and plans for emergencies such as power outages, floods, earthquakes, malicious attacks via the Internet, theft, and security breaches to name just a few. Managers must take every precaution to make sure their systems are operational and protected around the clock every day of the year. Losing a laptop or experiencing bad weather in one part of the country simply cannot take down systems required to operate core business processes. In the past, someone stealing company information would have to carry out boxes upon boxes of paper. Today, as data storage technologies grow in capabilities while shrinking in size, a person can simply walk out the front door of the building with the company’s data files stored on a thumb drive or external hard drive. Today’s managers must act responsibly to protect one of their most valued assets, information. To support continuous business operations, an information infrastructure provides three primary elements:
Page 176
FIGURE 5.3
Areas of Support Provided by Information Infrastructure
Backup and recovery plan
Disaster recovery plan
Business continuity plan (see Figure 5.3)
Backup and Recovery Plan
Each year businesses lose time and money because of system crashes and failures. One way to minimize the damage of a system crash is to have a backup and recovery strategy in place. A backup is an exact copy of a system’s information. Recovery is the ability to get a system up and running in the event of a system crash or failure that includes restoring the information backup. Many types of backup and recovery media are available, including maintaining an identical replica or redundant copy of the storage server, external hard drives, thumb drives, and even DVDs. The primary differences between them are speed and cost.
Fault tolerance is the ability for a system to respond to unexpected failures or system crashes as the backup system immediately and automatically takes over with no loss of service. For example, fault tolerance enables a business to support continuous business operations if there is a power failure or flood. Fault tolerance is an expensive form of backup, and only mission-critical applications and operations use it. Failover , a specific type of fault tolerance, occurs when a redundant storage server offers an exact replica of the real-time data, and if the primary server crashes, the users are automatically directed to the secondary server or backup server. This is a high-speed and high-cost method of backup and recovery. Failback occurs when the primary machine recovers and resumes operations, taking over from the secondary server.