Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Zangle student connect flat rock

29/11/2021 Client: muhammad11 Deadline: 2 Day

Assignment 4: Hashtables In this assignment we'll be revisiting the rhyming dictionary from assignment 2. But this time we'll be loading it into a hashtable and using the hashtable ADT to implement a bad poetry generator.

Point breakdown

TO DO #1: Implement a hashtable ​ - 60 points TO DO #2: Loading the dictionary ​ - 20 points TO DO #3: Removing unrhymable words ​ - 20 points

To Do 1: Implementing a Hashtable You'll be implementing a hashtable class called ​MyHashtable​. It implements the interface DictionaryInterface​. Dictionary operations were discussed in class. There's a description of them on pages 643-651 of the book as well, though the book calls these ​Tables​ instead of Dictionaries​ (as discussed in class, we're using the term ​dictionary​ as well as the standard names for dictionary operations instead of the book's non-standard names). The hashtable you'll be making will use ​Strings​ as the keys and ​Object​ as the values. Similar to linked lists, by storing ​Object​ as values, you can store any kind of object in the hashtable. To implement a hashtable:

● You'll need to define a protected inner class inside ​MyHashtable​ called Entry (similar to how you defined an inner class for ​Node​ in Assignment 2). This inner class stores Key/Value pairs. So it has two fields:

○ String key ○ Object value

It also should have a constructor for initializing the key and value. ● Your hashtable will define three protected fields (remember that protected means that

the field can only be accessed from within the class or by ​any child class of the class​). ○ int​ tableSize​ - the size of the array being used by the hashtable ○ int​ size​ - the number of key/value entries stored in the hashtable ○ MyLinkedList[] table​ - an array of MyLinkedList. The reason that each

element of the array is a linked list is to store multiple entries which collide, that is, for which the hash for the different keys is the same index in the table.

● You'll be implementing the following methods on MyHashtable ○ public​ ​boolean​ ​isEmpty​()

Returns true if the hashtable is empty, false otherwise. You can use the ​size field to determine this easily.

○ public​ ​int​ ​size​() Returns the size (number of key/value pairs stored in the hashtable).

○ public​ Object ​put​(String key, Object value) Adds a new key/value pair to the hashtable. If the key has been previously added, it replaces the value stored with this key with the new value, and returns the old value. Otherwise it returns null. There's more info on how to implement this method below.

○ public​ Object ​get​(String key) Returns the value stored with the key. If the key has not previously been stored in the hashtable, returns ​null​. There's more info about how to implement this method below.

○ public​ ​void​ ​remove​(String key) Removes the key/value pair associated with the key from the hashtable. There's more info about how to implement this method below.

○ public​ ​void​ ​clear​() Empties the hashtable. The easiest way to do this is to just set ​table​ equal to a new fresh array - the old one will be garbage collected (memory reclaimed) by java. Remember to set ​size​ to 0 as well.

○ public​ String[] getKeys() Returns an array of all the keys stored in the table. This function is necessary because having all the keys is the only way to iterate through the values in a hashtable. There's more info about how to implement this method below.

○ public​ ​MyHashtable​(​int​ tableSize) The constructor for the hashtable. Takes an argument that is used to set the size of the array used to store the hashtable. Initialize ​tableSize​, ​table​, and ​size​.

Hash Codes

In a hashtable, to compute an index into the array given a key you compute a hashcode for the key. Since our keys are all ​Strings​, we'll be using the method ​hashCode()​ which is already provided on ​Strings​. As an example: String key = ​"hello"​; int​ hashCode = key.hashCode();

The integer returned by ​hashCode()​ ranges over the full range of negative and positive integers. So the number could be way out of range for indexing our table (depending on our array size) or could be negative, which we definitely can't use for indexing our array. So we'll use the same trick we talked about with array-based Queues of using the modulo operator to get the number within range:

int​ arrayIndex = Math.abs(hashCode) % tableSize; Math.abs() gets the absolute value (to get rid of negative numbers) and ​% tableSize​ puts the number into the range ​0​..tableSize-1​ by returning the remainder after dividing by ​tableSize​.

get()​, ​put()​ and ​remove()​ all take a key as one of the arguments. So these functions will all need to compute an array index from the key to look in the table. Remember that our table is an array of type ​MyLinkedList​, where each item in the linked list is an ​Entry​ (storing a key and value). Why can't we just store the values directly in the table? The reason is that hash functions can result in ​collisions​, where two different keys get mapped to the same array index (because they have the same hash code). So we have to story our entries (key/value pairs) in lists. In a hashtable, this list is called a bucket (or sometimes a slot). Each list in the table stores entries whose keys result in hash collisions. But if our hash function is good, it will spread the data out well so that no bucket ever gets too long.

Implementing ​Object ​get​(String key) To implement ​Object ​get​(String key)​ you need to:

1. Compute an array index given the key (see above). 2. If that location in the table is ​null​, that means nothing has been stored using a key with

this hash code. So we can return null. 3. If the location isn't ​null​, then it contains a ​MyLinkedList​ which is the bucket for all keys

that collide using the hash function. 4. Linearly search through the bucket (the list), comparing the key for each entry with the

key passed into ​get()​. If you find a match, return the value. If you get to the end of the list without finding a match, return ​null​ (nothing stored for this key).

Implementing ​Object ​put​(String key, Object value) To implement ​Object ​put​(String key, Object value)​ you need to:

1. Compute an array index given the key. 2. If that location in the table is ​null​, that means nothing has been previously stored using

a key with this hash code. a. Create a new ​MyLinkedList​ to be the bucket. b. Add the new ​Entry​ for the key/value pair to the list. c. Set this location in the array equal to the new bucket (list). d. Increment the ​size​ (the number of unique keys you have stored).

3. If the location in the table isn't ​null​, that means keys with this colliding hash code have been previously stored. So our new key/value pair might be a key that's already been added (in which case we replace the value), or a brand new key (in which case we add a new ​Entry​ to the bucket).

a. Linearly search through the bucket (the list) stored at this array location comparing the key for each entry with the key passed into ​put()​. If you get a match, this means this key as been previously stored. Save the old value in the Entry​ (so you can return it) and replace it with the new value. You don't need to increment the size since you're not adding a new key.

b. If you don't find the key in the bucket, then just add a new ​Entry​ (with the key and value) to the beginning of the list. Increment the ​size​.

4. Return the old value if storing using an existing key (step 3.a above), otherwise return null​ if you're adding a new key (step 2 or step 3.b).

Implementing ​void​ ​remove​(String key) To implement ​void​ ​remove​(String key)​ you need to:

1. Compute an array index given the key. 2. If that location in the table is null, then this key has definitely not been used to store a

value. No need to do anything. 3. If the location in the table has a bucket, we need to linearly search it to see if it contains

an ​Entry​ with the key. If you find an ​Entry​ in the bucket (linked list) with the key: a. Remove this ​Entry​ from the bucket. b. Decrement ​size​ (the number of unique keys stored in the hashtable).

Implementing ​String[] getKeys() To implement ​String[] getKeys()​ you need to:

1. Create a ​String[]​ with a size equal to the number of unique keys in the hashtable (hint: one of our hashtable fields is keeping track of this).

2. Iterate through the hashtable array. For each table location that isn't ​null​: a. Iterate through the bucket (linked list), getting the key out of each ​Entry​ and

storing it in the array of strings you created in step 1. You'll need some kind of counter to keep track of where in the array of ​Strings​ you're adding the key.

3. Return the ​String[]

Extra Functions for Experimentation

Two extra functions that are not part of the ​DictionaryInterface​ have been provided on MyHashtable​ to let you experiment with how collisions change as you change the table size of MyHashtable​. There's no To Do item associated with these functions; they're just for your own experimentation. public​ ​int​ ​biggestBucket​()​ returns the size of the largest bucket (the most collisions) in the hashtable. public​ ​float​ ​averageBucket​()​ returns the average bucket size. Together, these two functions give you a sense of how frequently collisions are happening in the hashtable. As you make the table size smaller, the number of collisions will go up. In the limit of creating a hashtable with 1 table entry, then every key/value pair is stored in one big list. On ​MyHashtable​ there's also an implementation of ​public​ String ​toString​()​. This allows you to print out the key/value pairs in your hashtable. There's also a method in RhymingDict.java​ called ​public​ ​void​ ​testDictionary​(DictionaryInterface dict)​. You can use this method to test your hashtable once you've implemented it. It does some

simple adding, removing and replacing of key/value pairs and prints out the hashtable so you can confirm your table is working correctly.

Rhyming Dict After you've made your hashtable, the remaining two To Do items are in ​RhymingDict.java​. RhymingDict.java​ already does the following:

● Creates a ​MyHashTable​ with size 20,000. ○ The ​keys​ we'll use in this hashtable are rhyming groups (like ​"AA1 V AH0"​). ○ The ​values​ we'll use in this hashtable are ​MySortedLinkedList​. Each

MySortedLinkedList​ will store individual words sharing a rhyme group. ○ We're providing you with a working version of ​MySortedLinkedList​.

● Does the file management to read each line from the CMU Pronunciation dictionary ○ The CMU Pronunciation dictionary is a free data source of how each word in

English is pronounced, useful for text-to-speech or rhyming applications. ● Writes poems

○ Picks two rhyming groups at random from an array of keys. ○ Gets the ​MySortedLinkedList​ of words for each group. ○ Picks two random indices for each list (based on the length of the list), and uses

these two get four words, two words from each list. ○ Uses those words to make a poem, e.g.

"Roses are tapers,

violets are calmest.

I am vapors

and you are promised."

Note: ​we removed most of the bad words from the dictionary, but the poems might still sometimes make bad or offensive juxtapositions

You need to implement the following:

● TO DO # 2 ​: Store each line from the CMU dictionary in the hashtable. This involves implementing the method ​storeRhyme()​.

○ Use ​getWord()​ and ​getRhymeGroup()​ to get the word and rhyme group for the line.

○ Lookup (get) the key (the rhyme group) in the ​Dictionary​ (hashtable). If the result is null, then this rhyme group has not been added before.

■ Create a new ​MySortedLinkedList​. ■ Add the word to the list. ■ Put the key (rhyme group) and value (list) in the ​Dictionary​.

○ If the result of the lookup (get) isn't null, then we've already started a word list for this rhyme group.

■ Add the word to the list returned by ​get()​. Nothing needs to be added to the ​Dictionary​ since the list is already in the ​Dictionary​.

● TO DO #3 ​: Remove the unrhymable words from the dictionary. Some words are in a rhyme group by themselves. That means that nothing rhymes with them. We want to get rid of those before trying to make poems. You'll do this by implementing removeUnrhymables()​.

○ Use ​getKeys()​ to get an array of all the keys. ○ Iterate through all the keys, retrieving the value (linked list) associated with each

key. ■ If the length of the list is 1, that means there's only one word in the list:

nothing rhymes with it. Use ​Dictionary.remove()​ to remove this entry. ○ If you're curious to see what words don't have rhymes (at least according to the

CMU pronunciation dictionary), you could add a println to print out the words as you remove their corresponding entries. If you do this, don't forget to comment it out before you turn it in.

Example Input and Output RhymingDict​ can take 0, 1 or 2 command line arguments.

● The first argument is a seed for the random number generator. If you provide 0 arguments this defaults to the current system time.

● The second argument is the number of poems to generate. If 0 or 1 arguments are provided, this defaults to 3.

For this command line:

java RhymingDict ​20​ ​4 the output should look like:

If I were attuned

then you'd be the muggy,

And we'd both be marooned

and never be buggy

If I were tiber

then you'd be the jonas,

And we'd both be fiber

and never be bonus

Roses are flourish,

violets are deeply.

I am nourish

and you are steeply.

Roses are learners,

violets are overturn.

I am burners

and you are sunburn.

Turning the code in ● Create a directory with the following name: _assignment4 where you

replace with your actual student ID. For example, if your student ID is 1234567, then the directory name is 1234567_assignment4

● Put a copy of your edited files in the directory (​RhymingDict.java​, MyHashtable.java​). Note: your ​Entry​ helper class should be implemented as an inner class ​inside ​ of ​MyHashtable​.

● Compress the folder using zip. Zip is a compression utility available on mac, linux and windows that can compress a directory into a single file. This should result in a file named _assignment4.zip (with replaced with your real ID of course).

● Double-check that your code compiles and that your files can unzip properly. You are responsible for turning in working code.

● Upload the zip file through the ​page for Assignment 4 in canvas​.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Instant Assignments
Innovative Writer
Buy Coursework Help
Engineering Guru
Instant Assignment Writer
Top Class Engineers
Writer Writer Name Offer Chat
Instant Assignments

ONLINE

Instant Assignments

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$39 Chat With Writer
Innovative Writer

ONLINE

Innovative Writer

As per my knowledge I can assist you in writing a perfect Planning, Marketing Research, Business Pitches, Business Proposals, Business Feasibility Reports and Content within your given deadline and budget.

$22 Chat With Writer
Buy Coursework Help

ONLINE

Buy Coursework Help

As an experienced writer, I have extensive experience in business writing, report writing, business profile writing, writing business reports and business plans for my clients.

$16 Chat With Writer
Engineering Guru

ONLINE

Engineering Guru

Being a Ph.D. in the Business field, I have been doing academic writing for the past 7 years and have a good command over writing research papers, essay, dissertations and all kinds of academic writing and proofreading.

$42 Chat With Writer
Instant Assignment Writer

ONLINE

Instant Assignment Writer

I find your project quite stimulating and related to my profession. I can surely contribute you with your project.

$26 Chat With Writer
Top Class Engineers

ONLINE

Top Class Engineers

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$43 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

L shaped hip roof - What is parsol 1789 - Essay - Water meter reading worksheet - Camshaft position sensor wiring diagram - Words their way spelling lists - Br electron configuration full - Artificial insemination course victoria - Cambridge primary mathematics stage 2 - Cell homeostasis virtual lab worksheet answers - Discussion Board for Learning Strategies for Success - Paper - Declaration of interest template - Us bank cocoa beach fl - Absolutely Zero PLAGIARISM - Organ leader dis - Pros and cons of going to school year round - Starbucks and conservation international case - Chap. 3 Q HR - Infograph and 400-550 word letter - Caterpillar refrigerant capacity chart - Dead men's path character analysis - Guide to computer forensics and investigations 6th edition solutions - Bonds between two atoms that are equally electronegative are ________. - Financial Report - The madoff affair questions and answers - Ansi y32 2 ieee std 315 - Autoimmune Brochure - One for the murphys prezi - Is nudie juice pasteurised - What is implicit culture - 14 principles of tps - Is baristaing a word - 2.4 3 two's complement arithmetic answer key - Curtin university maths enrichment - Ideal citizen in a totalitarian government - Accent 1000 cheat sheet - Global supply chain management simulation cell phone tips - Consent to act as director - Earned value worksheet - Dr morrison walden ny - Dr gluck life without limits - Saville assessment professional styles answers - James reyne train ride lyrics - Free fall lab report introduction - Ford motor company market structure - BCOMM8 - English - The kite runner characters - Week9 health discussion 455 - Types of Qualitative Research - Jcpenney corporate strategy - The analysis of biological data second edition assignment problems - Next level surveillance china embraces facial recognition - Downfall creek bushland centre - A sales invoice included the following information merchandise price - Ilumba gardens nursing home - Fin 534 homework set 2 - What is the molecular shape of sf6 - Nw african nation crossword - How much does a pistachio weigh - An insulated beaker with negligible mass contains - Include but not be limited to - King lear questions and answers doc - Legacy of racism reflection essay - Primary care respiratory society - Industrial property valuation report - Blogpost (Digital Marketing) - Reflection 9 - Examples of universal truths in literature - Guru nanak dev university engineering college amritsar - Cpt code for removal of foreign body from ear lobe - Mass production in multimedia - Agree to time frames for carrying out workplace instructions - Research Project #1 Project 1: VEEM and Blockchain Technologies Transforming Global Marketing (Due within 5hours) - A christmas carol scenes - Project libre tutorial - Food and nutrition igcse book pdf - How many g3p to make glucose - Mine overseer certificate of competency training - Uniformly accelerated linear motion conclusion - Ikea expansion into china - Nursing Philosophy (4) - Discussion 5 - Unit 1 essay - Interesting facts about the northern hairy nosed wombat - Week Assignments - Project kickoff meeting powerpoint presentation - Sophos partner portal login - Energy skate park game - Which of the following statements regarding gantt charts is true - Industrialization between 1865 and 1920 - George orwell homage to catalonia pdf - Procedural design in software engineering ppt - Tan inverse 2x tan inverse 3x pi 4 - Who was to blame for the peterloo massacre - Agar cube diffusion experiment - Aaac guideline for apartment and townhouse acoustic rating - Nihr academic clinical fellowship - What planet is orange colored dot