Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Calculate the effectiveness of the heat exchanger in problem 6

19/11/2021 Client: muhammad11 Deadline: 2 Day

Heat Transfer HW

Fundamentals of Heat and Mass Transfer, Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, John Wiley & Sons, Inc.

•Chapter 1: Introduction

Conduction Heat Transfer •Chapter 2: Introduction to Conduction •Chapter 3: 1D, Steady-State Conduction •Chapter 4: 2D, Steady-State Conduction •Chapter 5: Transient Conduction

Convection Heat Transfer •Chapter 6: Introduction to Convection •Chapter 7: External Flow •Chapter 8: Internal Flow •Chapter 9: Free Convection •Chapter 10: Boiling and Condensation •Chapter 11: Heat Exchangers

Radiation Heat Transfer •Chapter 12: Radiation Processes and Properties •Chapter 13: Radiation Exchange Between Surfaces

1 Mass Transfer

•Chapter 14: Diffusion Mass Transfer

Chapter-11

(Heat Exchangers)

2

Chapter-11: Heat Exchangers

3

11.1 Heat Exchanger Types 11.2 The Overall Heat Transfer Coefficient

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference

11.3.1 The Parallel-Flow Heat Exchanger 11.3.2 The Counterflow Heat Exchanger 11.3.3 Special Operating Conditions

11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method

11.4.1 Definitions

11.4.2 Effectiveness–NTU Relations 11.5 Heat Exchanger Design and Performance Calculations 11.6 Additional Considerations

11.7 Summary

Heat Exchanger Types

Heat exchangers are ubiquitous in energy conversion and utilization. They involve heat exchange between two fluids separated by a solid and encompass a wide range of flow configurations.

• Concentric-Tube Heat Exchangers

Parallel Flow Counterf low

Ø Simplest configuration. Ø Superior performance associated with counter flow.

Cross-flow Heat Exchangers

Finned-Both Fluids Unmixed

Unfinned-One Fluid Mixed the Other Unmixed

Ø For cross-flow over the tubes, fluid motion, and hence mixing,

in the transverse direction (y) is prevented for the finned tubes, but occurs for the unfinned condition.

Ø Heat exchanger performance is influenced by mixing.

Shell-and-Tube Heat Exchangers

One Shell Pass and One Tube Pass

Ø Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection.

Ø The number of tube and shell passes may be varied, e.g.:

One Shell Pass, Two Tube Passes

Two Shell Passes, Four Tube Passes

Compact Heat Exchangers

Ø Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas.

Ø Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow.

(a) Fin-tube (flat tubes, continuous plate fins) (b) Fin-tube (circular tubes, continuous plate fins) (c) Fin-tube (circular tubes, circular fins) (d) Plate-fin (single pass) (e) Plate-fin (multipass)

Overall Heat Transfer Coefficient (1/2)

• An essential requirement for heat exchanger design or performance calculations.

• Contributing factors include convection and conduction associated with the two fluids and the intermediate solid, as well as the potential use of fins on both sides and the effects of time- dependent surface fouling. • With subscripts c and h used to designate the cold and hot fluids, respectively, the most general expression for the overall coefficient is:

Overall Heat Transfer Coefficient (2/2)

Ø

→ Table 11.1

Ø

Assuming an adiabatic tip, the fin efficiency is

Ø

A Methodology for Heat Exchanger Design Calculations (Log Mean Temperature Difference (LMTD) Method)

• A form of Newton’s law of cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids:

ΔT = ΔT

1 − ΔT2

l m 1n (ΔT1 / ΔT2 )

Evaluation of depends on the heat exchanger type.

• Counter-Flow Heat Exchanger:

ΔT ≡ T − T 1 h ,1 c,1

= T

h ,i −

T

c ,o

ΔT ≡ T − T 2 h ,2 c,2

= T

h ,o −

T

c ,i

Parallel-Flow HeatΔT1≡Th,1− TExchangerc,1

= T

h ,i −

T

c ,i

Ø Note that Tc,o cannot exceed Th,o for a PF HX, but can do so for a CF HX.

Ø For equivalent values of UA and inlet temperatures,

• Shell-and-Tube and Cross-Flow Heat Exchangers:

Overall Energy Balance

• Application to the hot (h) and cold (c) fluids:

• Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid.

• Assuming no l/v phase change and constant specific heats,

Special Operating Conditions

Ø Case (a): Ch>>Cc or h is a condensing vapor – Negligible or no change in Th (Th,o=Th,i)

Ø Case (b): Cc>>Ch or c is an evaporating liquid

– Negligible or no change in Tc (Tc,o=Tc,i) Ø Case (c): Ch=Cc.

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (1/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (2/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (3/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (4/5)

Exercise Problem 11.5: Determination of heat transfer per unit length for heat recovery device involving hot flue gases and water. (5/5)

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (1/3)

SCHEMATIC:

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (2/3)

<

Exercise Problem 11.54: Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MWe at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. (3/3)

<

General Considerations

• Computational Features/Limitations of the LMTD Method:

The LMTD method may be applied to design problems for which the fluid flow rates and inlet temperatures, as well as a desired outlet temperature, are prescribed. For a specified HX type, the required size (surface area), as well as the other outlet temperature, are readily determined.

Ø If the LMTD method is used in performance calculations for which both outlet temperatures must be determined from knowledge of the inlet temperatures, the solution procedure is iterative.

Ø For both design and performance calculations, the effectiveness-NTU method may be used without iteration.

Definitions (1/2)

• Heat exchanger effectiveness, : • Maximum possible heat rate: Ø Will the fluid characterized by Cmin or Cmax experience the largest possible temperature change in transit through the HX?

Ø Why is Cmin and not Cmax used in the definition of qmax?

Definitions (2/2)

• Number of Transfer Units, NTU

Ø A dimensionless parameter whose magnitude influences HX performance:

Heat Exchanger Relations (1/2)

q = ε Cmin (Th , i −Tc ,i ) • Performance Calculations: Ø

Cr Ø

Heat Exchanger Relations (2/2)

Design Calculations:

ε ↑ with ↓ Cr Ø Ø

• For all heat exchangers,

ε = 1 − exp (−NTU)

• For Cr

= 0, a single

or

relation applies to all HX types.

NTU = −1n (1 − ε )

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (1/5)

SCHEMATIC:

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (2/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (3/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (4/5)

Exercise Problem 11.35: Use of twin -tube (brazed) heat exchanger to heat air by extracting energy from a hot water supply. (5/5)

and from Eq. (1) the effectiveness is

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure. (1/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio- pulmonary bypass procedure.(2/3)

Exercise Problem 11.39: Use of a cross-flow heat exchanger to cool blood in a cardio-pulmonary bypass procedure. (3/3)

Suggested Problems to Practice

•Example Problem: 11.1 (Page-716) to 11.8 (Page-742) •Exercise Problem: 11.1 (Page-748) to 11.94 (Page-765) •Derive equation 11.14 showing all the steps to find total heat transfer for parallel flow heat exchanger. Apply the same concept for counter- flow heat exchanger. •Derive equation 11.28a showing all the steps to find relation between heat exchanger effectiveness and NTU.

35

Homework-5

§Solve all the example problems (11.1 to 11.8) from the text book from this Chapter- 11 §Solve all the exercise problems (11.5, 11.35, 11.39, and 11.54) mentioned in the slides from this Chapter-11 §Show all the steps (Given, Find, Assumptions, Solve, hand drawings etc.) to give impression that you understood the problem §Write all the necessary equations applied to those problems

§Due by Tuesday 7/31 by 8pm §You can submit the homework early, if you want §Write your solved problems, scan all the pages as one pdf §Please use the file name for attachment as: 'HW-5-Your First and Last name' .

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Financial Assignments
Writing Factory
Calculation Master
Essay & Assignment Help
Buy Coursework Help
Solution Provider
Writer Writer Name Offer Chat
Financial Assignments

ONLINE

Financial Assignments

I have written research reports, assignments, thesis, research proposals, and dissertations for different level students and on different subjects.

$37 Chat With Writer
Writing Factory

ONLINE

Writing Factory

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$22 Chat With Writer
Calculation Master

ONLINE

Calculation Master

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$30 Chat With Writer
Essay & Assignment Help

ONLINE

Essay & Assignment Help

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$46 Chat With Writer
Buy Coursework Help

ONLINE

Buy Coursework Help

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$23 Chat With Writer
Solution Provider

ONLINE

Solution Provider

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$40 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Dna polymerase iii always adds nucleotides to the - Ji bi hi fi brighton - Week 2 group discussion - Snap on vacuum sandblaster - A vending machine automatically pours soft drinks into cups - How to find domain for quadratic function - Wells fargo faces la lawsuit for unethical conduct - Measurement of earth resistance four point method - Department of health criminal screening - Research Paper: Server Virtualization - Mid essay - Magnesium nitrite trihydrate molecular mass - Visualization tool analysis on a dataset - Evaluating Resources - Soc 120 week 2 assignment waste reduction - Bride kidnapping in kyrgyzstan documentary - Friends of kings park native plant sale - The lonely good company of books - Adobe reading untagged document - Annotated bibliography and outline leadership behavior - Morin actuator b series - Medicare levy variation declaration - Characteristics of dystopian novels - Waltham motors division case study answers - Prime composite numbers worksheet - Richard haas oregon historical society - In order for john to hear jill air molecules - How to find volume of a 3d shape - Robotic arm using syringes - Discussion - Suppose the book printing industry is competitive - Vcaa 2011 pe exam - Deliverable 7 - Healthcare Intake Packet - "as the price of apples goes up, the demand for apples goes down." the author of this statement - Chrome flags enable site per process - Homework - African american thesis statement - According to the sub-saharan africa anglo culture cluster, the most desirable leader behavior is - Balance sheet detective - An oily secretion that helps to waterproof body surface - 4 ps of marketing example - Order 2207845: Advanced Directives informed consent - Marshmallow energy content - Criteria for evaluating electronic resources - Joyce meyer healing prayers - Combinatorial proof of binomial theorem - Government accounting system in bangladesh - The woman who shopped - Imagery examples in the book thief - Week 5 Discussion - Kal so4 2 name - Mgmt 449 csuf - Case Discription - Radio drama script example - WEEK 2 DISCUSSION 1 PHARMACOLOGY - How to keep mudeyes alive - Healthcare balanced scorecard and dashboard - Use template to build a Strategic Marketing Plan Part B - How does haemon die - Bus 17 mutual - Senior year memory book - Student exploration collision theory answer key pdf - Danny porter mechanical darwin - Bmc footprints asset core - Negative effects of homework on students - Cisco ise endpoint purge - The steel framework is used to support - Critical thinking consider the verdict 6th edition - ACCT105 - Bending light virtual lab answers - The green army pty ltd - Ken butterfield pastor - Heart rate activity worksheet answers - 22 c to kelvin - Lcd leveraged loan primer - Why is foopets not free anymore - Bmw marketing strategy case study - Sir gawain and the green knight answer key - Enter the november 1 balances in the ledger accounts - Change of base in log - Nutrition Care Plan for COPD - What is an eportfolio - Boba interview questions - 703 sandy bay road - 91.7 kg in stone - The eukaryotic cell cycle and cancer an overview worksheet answers - Ian fisk country music gig guide - The body shop income statement - Capstone Research Companion - The great italian trivia game - Https icampus strayer edu student homepage - Olap operations with examples ppt - Homework - Stair climbing and power lab answers - Case study - Let's talk digital key answers - Source comparison worksheet - Submit web series to hulu - Statistical encoding in multimedia - James edward crow jr murderpedia